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Introduction

Prof. Goangseup Zi is conducting researches on “structural systems” with the application of solid

mechanics. Depending on the length scale of interest, the “structural system” may be structures,

members, materials, etc. Specifically, he is interested in the failure of the structural systems made

of quasi-brittle materials such as concretes, rocks and synthetic composite materials, etc.

Zi’s work has spanned several engineering disciplines. He made outstanding advances in com-

putational fracture mechanics, fracture, damage and deterioration of concrete structures, and

multi-physics cross-field. He has been honored with numerous awards in recognition of his accom-

plishments. Particularly in 2018, he received the award of Highly Cited Researcher, which is given

by Clarivate Analytics to only top one percent of authors worldwide with most cited publications

across all scientific and engineering fields as shown in Fig. 1. He has authored or coauthored two

books and more than 100 research articles in internationally refereed journals.

Education

Born and educated in Republic of Korea, Zi received his B. S. and M. S., Ph. D. degrees in civil

engineering from the Hanyang University, Seoul, Korea and Northwestern University, Evanston,

IL, USA. His Ph. D. advisor was Prof. Zdeněk P. Bažant. During his Ph. D. study, he was awarded

Walter P. Murphy honorary fellowship from 1997 to 1998. After his Ph.D., he worked with Prof.

Ted Belytschko at the same institute. Both Profs. Zdeněk P. Bažant and Ted Belytschko are
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Figure 1: 2018 Highly Cited Researcher given by Clarivate Analytics.

extremely well-known researchers for their contributions to fracture mechanics and computational

mechanics, respectively.

Computational fracture mechanics

Of all of his works in computational fracture mechanics, Zi’s contribution to the extended finite

element method (XEFM), the extended element-free Galerkin method (XEFG) and the Phantom

node method for the simulation of crack growth is well-recognized in the field of computational

fracture mechanics. He developed a unique but very simple enrichment scheme as shown in Fig. 2

[41]. It was proposed for the first time to introduce the ordinary step enrichment to only a part of

the crack tip element. The enriched displacement field was interpolated by using the same kind of

the shape function. This idea greatly simplified the implementation of the enrichment for partially

cracked elements, and improved the accuracy and efficiency of the fracture simulation for cohesive

cracks. This paper has been cited more than 320 times.

This idea was further simplified into the so-called Phantom node method in which no enrich-

ment is required at all [27, 30]. The standard approximation of the displacement field on was

used in each side of the cracked element. The elements were extended to the opposite sides of the

crack introducing the local duplication of homologous nodes called phantom-nodes, as shown in

Fig. 4. Only the part of the element for the real domain was integrated to construct the varia-

tional condition for its implementation. It was shown that,thanks to its conceptual simplicity, this

scheme could be combined very freely with other assumed strain-based elements, such as MITC3

and MITC4 [6, 7].
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Figure 2: Zi’s enrichment scheme for partially cracked elements [41].
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Recently, an alternative method to the XFEM has been proposed by Hansbo and Hansbo [15].
The basic difference from the original XFEM is the way in which approximation space is enriched.
In the original XFEM, additional degrees of freedom are introduced into the variational formulation.
These additional degrees of freedom solely determine the crack kinematics, i.e. the jump in the
displacement field. Hansbo and Hansbo [15] suggest a method where the crack kinematics is
obtained by overlapping elements instead of introducing additional degrees of freedom. Although
it has been shown by Song et al. [16] that the method of Hansbo and Hansbo [15] is equivalent
to the original XFEM, the formulation by Hansbo and Hansbo [15] has particular advantages with
respect to the implementation of the method. First, since all degrees of freedom are physical,
the mass matrix can be obtained by a standard row sum procedure that is especially useful in
explicit dynamic codes. Second, the idea of Hansbo and Hansbo [15] is easier to implement
into commercial finite element codes since no additional degrees of freedom are introduced that
increase in number when the crack grows [17]. While Hansbo and Hansbo [15] have given a
rather a theoretic framework, Mergheim et al. [18] have implemented the idea of Hansbo and
Hansbo [15] in a static setting in two dimensions and also in three dimensions [19]. Song et al.
[17] have introduced a two-dimensional phantom-node method in two dimensions. This concept
has also been used in a shell framework in Areias et al. [20].

We follow the phantom-node method in Song et al. [17] and extend their approach to model
crack tips within an element. In Song et al. [17], the crack has to cross an entire element. We
propose this idea for triangular and quadrilateral elements using reduced integrated finite elements
with hourglass control [21]. Thanks to the absence of an enrichment, it is simple to incorporate
concepts such as enhanced assumed strain (EAS) into the new formulation.

2. A REVIEW OF THE PHANTOM-NODE METHOD

Consider a body that is cracked as shown in Figure 1 and the corresponding finite element
discretization. Because of the crack, there are cracked elements cut by the crack. To have a set

Figure 1. The principle of the phantom-node method in which the hatched area is integrated
to build the discrete momentum equation; the solid circles represent real nodes and the

empty circles represent phantom nodes.
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Figure 17. The crack configuration in the deformed configuration of the
crack-branching problem at different times.

Figure 18. The crack pattern and stress distribution for the branching problem at different load steps:
(a,c,e) principal tensile stress and (e, f,g) shear stress.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 75:577–599
DOI: 10.1002/nme

Figure 3: Phantom node method for cohesive fracture [27].
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(a)
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Fig. 2 The discontinuous displacement field by Zi and Belytschko
[51]’s scheme in which the shape function for the enrichment is
modified so that the crack tip is positioned at the edge; a three
node triangular element and b six node triangular element

(b)

(a)

(c)

Fig. 3 Domain of influences a completely cut by the crack and
b, c partially cut; b is decreased so that the crack tip is positioned
at its edge and c is not needed as its size is decreased; circles and
hatched circles are unenriched particles, and solids enriched nodes

in Eq. (8). This is so that the crack tip is positioned at its
edge as shown in the figure, i.e.

�∗
J(X) = pT(X) · A∗(X)−1 · D∗(XJ), (12)

A∗(X) =
∑

J

p(XJ) pT(XJ) W(r̄∗
J ; h∗

J), (13)

D∗(XJ) =
∑

J

p(XJ) W(r̄∗
J ; h∗

J) (14)

Fig. 4 The discontinuity �c,ext beyond crack tip P when particles
are enriched by using only the sign function

in which the asterisk denotes the modification for the
crack tip and h∗ is the modified size of the domain of
influence. Note that the shape function for the continu-
ous displacement field as in Eq. (1) is not changed.

The domain of influence of particle 3 is also partially
cut. The shape function may be shrunk, too. However,
we do not enrich the particle. Because the particle is
very close to the crack tip, the shape function becomes
very small compared to others after it is modified. The
approximation for the discontinuous displacement field
becomes bumpy. Therefore, when the domain of influ-
ence of a particle is partially cut, we enrich the particle
if the support of the shape function includes at least one
enriched particle after it is modified. Particle 4 is also
not enriched because the shape function becomes not
cut by the crack as it is modified.

One drawback of this method is that the crack appears
to be shorter for particles close to the crack and the crack
tip. This is because such particles are not enriched and
hence do not feel the presence of the crack. We there-
fore expect the system response to be a little stiffer.
However, we did not observe any severe difficulties or
discrepancies compared to more accurate techniques as
e.g. Lagrange multiplier method explained in the next
section. As might become obvious, this method is well
suited for adaptive procedures that will not only provide
higher accuracy but also a better particle distribution
around the crack tip

3.3 Lagrange multiplier method

Instead of modifying the shape function of the parti-
cle whose domain of influence is partially cut, we may

380 Comput Mech (2007) 40:367–382

Fig. 18 The cracking patterns
of the plate with an edge
crack at different time steps
for the two different methods

Fig. 19 The crack speed time history for the crack branching
problem

Fig. 20 The test for a mixed-mode dynamic fracture of concrete
beam by John and Shah [24]; l2 = 101.6 mm

Fig. 21 The crack pattern of the John and Shah beam under
impact loading for a location of the notch at γ = 0.77; a 4,000
particles b 14,000 particles

tal results and the simulations by other researchers
very well. The results of the two proposed meth-
ods produced almost same results. If the domain of
influence is decreased, the results tend to be a little
softer since the crack appears to be a little shorter.
However the global response is barely influence by
this effect.

4. The loss of hyperbolicity is used to determine the
speed of crack propagation and the direction. The
speed of crack propagation calculated from
the loss of hyperbolicity is less than the Rayleigh
wave speed and seems acceptable theoretically.

Figure 4: The extended element free Galerkin method for static and dynamic fracture problems
[43].
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The nonaging relaxation spectrumR(j), which is the counter-
part of the nonaging retardation spectrumC(j), is not known.
Therefore, in order to determine the partial moduli of the Max-
well chain, one may use the well-known identity

R~0!C~ t !1E
0

t

C~ t2t8!Ṙ~ t8!dt851 (13)

The least-squares approximation of the data onC(t) with Eq. ~13!
~Bažant 1975, 1982; RILEM 1988!, or collocation of Eq.~13! at
the chosen set of discrete times, leads to a linear matrix equation,
from which the partial moduli can be solved. The discrete times
must be chosen, or else ill posedness is unavoidable. The partial
moduli also depend on the choice oftN11 ~Jirásek 2000!, which
corresponds toE` . Depending on this choice, negative values
may sometimes result for some partial moduli, which is physi-
cally unreasonable~Bažant 1975; 1982; Jira´sek 2000!.

Once the continuous relaxation spectrumR(j) is approxi-
mately calculated fromC(j), the partial moduli are uniquely and
efficiently obtained as a discrete approximation ofR(j). A good
approximation of a nonaging relaxation function can be obtained
from the nonaging compliance function simply by algebraic in-
version~Trost 1967; Bazˇant and Kim 1979; Tschoegl 1989!; viz.

R~j!5
1

C~j!
(14)

Therefore, for the approximation based on the third order of dif-
ferentiation, the spectrumL(t) may be calculated as

L~t!52
27t3

2C~3t!4 @C-~3t!C2~3t!

26C8~3t!C9~3t!16C83~3t!# (15)

All the steps are straightforward. In Fig. 3, the spectrum of the
optimum partial moduliEm obtained from Eq.~13! is compared to
the resulting continuous relaxation spectrum, for which the relax-
ation times are chosen ast150.001 day,t250.01 day, . . . , t6

5100 days. Both spectra seem to be close to each other, but the
latter is much smoother.

The analytical nonaging compliance and relaxation functions
are compared to their Maxwell chain approximations in Fig. 4.
Both show a good match within the given range of the relaxation

times, i.e., from 0.001 day to 100 days. The initial unbounded
spike in the relaxation function is not reproduced because of the
finiteness of the approximation, although one might question the
acceptability of an infinite spike. Since Model B3 represents an
addition~or serial coupling!of serial strain components, the over-
all relaxation function is always finite even though the analytical
relaxation function of the solidifying part is unbounded.

Not surprisingly, Eqs.~5! and~6! are identical to Eqs.~9! and
~15! for the continuous retardation spectrum~Bažant and Xi
1995! if R(j) is replaced by2C(j) andEm by Am .

Quasi-Elastic Incremental Stress-Strain Relation
for Creep

Assuming the nonaging viscoelastic strain rateġ to be constant
within each time step, one can exactly integrate the differential
equation of each Maxwell unit to obtain the partial stress att5 i
11

sm
i 115hmġ1~sm

i 2hmġ!e2EmDt/hm (16)

Expressingġ from this equation and substituting it into Eq.~11!,
one obtains a quasi-elastic incremental approximation of the con-
stitutive law ~Bažant 1971; 1975!;

Ds5E9~D«2D«9! (17)

Fig. 2. Solidification theory and Maxwell chain model

Fig. 3. Comparison of partial moduliEm determined from same
compliance function using classical least-squares method~dashed
line! and present continuous spectrum method~solid line!
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E95S q11
1

v i 11/2D
1q4

Dt

2h i 11D 21

D«95
Dg9

v i 11/21q4

Dt

h i 11/21D«0 (18)

where

D5 (
m51

N

Emlm1E` and Dg95
1

D (
m51

N

sm
i Dymlm (19)

with

Dym5
Em

hm
Dt5

Dt

tm
; lm5

12e2Dym

Dym
(20)

The changes of the internal variables are then obtained from

Dsm5EmlmS Ds

D
1g9D2sm

i Dymlm (21)

Eqs.~17!–~21! are the same as those obtained in various other
ways by Bazˇant and Prasannan~1989! and Carol and Bazˇant
~1993!. SettingDs51 only for the first step andDs50 for the
subsequent steps, one can compute from Eq.~17! the aging com-
pliances. They are compared to the analytical compliances in Fig.
5, which demonstrates a good match.

Generalization to Microprestress-Solidification Theory

As a further refinement of the original solidification theory, the
microprestress-solidification theory has been formulated~Bažant
et al. 1997; Bazˇant 2001!. In this theory, the following replace-
ment is made in Eq.~11!:

q4

h~ t !
s~ t !→

s~ t !

h~S!
(22)

whereh(S)51/cpSp21; S5microprestress; andc5material pa-
rameter. The evolution of microprestress is obtained from the
equation

Ṡ1c0Sp5ṁ (23)

wherec052c/q4 and m5chemical potential of evaporable pore
water52k1@T ln h1(m1 /k1)#. Here,k1 ,m15material parameters;
T5absolute temperature; andh5humidity. Eq.~23! represents the
relaxation of microprestress. SinceS decreases very rapidly near
t5t0 , where t05initial time, an explicit Eulerian integration
scheme does not work. Iteration is necessary to obtain the next
microprestressSi 11 with desired accuracy. This iteration, which
is not cheap, can easily be avoided. Assumingṁ(h,T) to be con-
stant within each time step, one can obtain an exact solution of
Eq. ~23! within the time step. With the initial conditionsS5Si at
t5t i ~alwaysp.1, and in the theoryp52)

Si 115
1

c0Dt1~Si !12p 1S ṁ i

c0
D 1/p

(24)

The adjustments that need to be made to the aforementioned
algorithm are relatively simple and may be stated as follows:~1!
calculate or read the change of the chemical potentialm; ~2! cal-
culateSi 11 using ~24!; and~3! calculate the corresponding vis-
cosity h i 1151/(2cSi 11).

Incorporation into Microplane Model

In Microplane Model M4, which has recently been developed at
Northwestern University ~Bažant et al. 2000a; Caner and
Bažant 2000!, the constitutive law is formulated in terms of the
stress and strain vectors on each microplane. The strain vectors
are kinematically constrained to the strain tensor. Because of this
constraint, the Maxwell chain is more convenient for creep cal-
culations than the Kelvin chain~if a static constraint were used,
the Kelvin chain model would, of course, be more convenient!. A
brief summary of the basic relations of the microplane model is
attached in the Appendix~for the details, see Bazˇant et al. 2000a!.

On each microplane, the strain vector is decomposed into the
volumetric strain, deviatoric strain, and shear strain. The trial
stress of each component is computed from the uniaxial elastic
constitutive law~33!. The Maxwell chain is implemented simply
by replacing the elastic constitutive law~33! for each microplane
by the viscoelastic constitutive law given by Eq.~17!. The incre-
ments of the volumetric, deviatoric and shear stress components
may be written as

Fig. 4. Comparison of curves of analytical relaxation and compli-
ance functions~solid lines!with curves of their Maxwell chain ap-
proximations~data points!determined from relaxation function~14!.
Top: For nonaging relaxation function; bottom: For nonaging com-
pliance function.

Fig. 5. Curves of analytical aging compliance function of model B3
~solid lines!and their Maxwell chain approximations~data points!

1334 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2002

Figure 5: Continuous relaxation spectrum for the simulation of age-dependent concrete creep [38].

Zi applied the idea of XFEM, i. e. the displacement enrichment, to the element free Galerkin

method (EFG) to develop the extended element free Galerkin method (XEFG) in close collabo-

ration with Profs. Rabczuk and Bordas [42, 43], as shown in Fig. 4. Because XEFG inherits the

advantages of both methods, i. e. the smooth displacement field of EFG and the strong discon-

tinuity of XFEM, this method was very successful in many different kinds of fracture problems

including linear [5, 28], nonlinear [24, 26, 31], static [4] and dynamic [25] fracture problems.

Fracture, damage and deterioration of concrete structures

Because of the multiscale nature of concretes, Zi worked in various length scales, i. e. from material

scales to structure scales, for this subject. He tried to provide a universal framework for both

structural concretes and asphalt concretes used in pavements. The continuous relaxation spectrum

method shown in Fig. 5 would be a good example which is useful for structural concretes [38] and

asphalt concretes as well [22]. By using this method, the age-dependent rheological model can

be determined uniquely. It had been a ill-conditioned problem to determine a rheological model

corresponding to a creep behavior using the widely-used least square fitting method.

Zi has developed various tools to study the nonlinear fracture and damage behavior of concrete

materials. One of the most important consequences of fracture mechanics is the size effect; the

nominal strength depends on the size. If the effect of nonlinear fracture is important, as observed

in most of structural concretes and also, asphalt pavement, a nominal strength may be determined

only after the calculation of the full load-displacement curve. He formulated an eigenvalue relation

between the nominal strength of a structure and the cohesive law mathematically [39]. It was

shown that the nominal strengths at different sizes could be determined without the calculation

of full load-displacement curves as shown in Fig. 6a. He also showed that the cohesive nonlinear

crack could be represented by the sum of infinitely many linear elastic cracks as shown in Fig. 6b

[1].

One of the test methods devised by Zi has been accepted as an international standard, ISO
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rN ¼

R a
a0
�ww;aðnÞ r;�wwðnÞ�wwðnÞ � rðnÞ

n o
dn þ Dr0

R a
a0
C

r0ðnÞr;�wwðnÞ�ww;aðnÞdn

D
R a

a0
C

rNðnÞr;�wwðnÞ�ww;aðnÞdn
ð15Þ

When the softening law of cohesive crack up to the critical opening displacement wc is linear, Eq.
(15) can be further simplified. For the linear softening law with zero residual stress, we have

r;�ww ¼ �1; �wwþ r ¼ 1 ð16Þ

and then Eq. (15) reduces to the expression

rN ¼
�
R a

a0
�ww;aðnÞdn þ Dr0

R a
a0
C

r0ðnÞ�ww;aðnÞdn

D
R a

a0
C

rNðnÞ�ww;aðnÞdn
ð17Þ

Note that the Eq. (17) applies only to positive geometries (i.e., the geometries of structure and
loading such that the stress intensity factor for constant load increases as the crack propagates).
The reason is that, for the negative–positive geometries, the fracture process zone (FPZ) can
get fully developed before reaching the maximum load, i.e., the case r;�ww ¼ 0 when w > wc can be
attained. However, Eqs. (12) and (15) are valid for both positive geometries and negative–positive
geometries since the eigenfunction of (12), dr=d�ww, is finite for all smooth softening laws. The effect
of the residual stress acting on the notch faces is included in expression (15) for the nominal
strength.

Because (12) is the continuous version of Li and Ba�zzant�s [21] discrete formulation, almost the
same algorithm as in that work may be used to obtain the size effect. With a slight improvement,
the algorithm is as follows.

(1) Prescribe the location of the cohesive crack tip a at successive nodes on the crack path.
(2) Estimate the eigenvalue of Eq. (12) corresponding to the dimensionless size D (the estimate

can simply be the value in the previous step).
(3) Compute the dimensionless opening �ww and dr=d�ww from the crack compatibility condition (4)

or (6) for the current relative crack length.
(4) Solving the eigenvalue problem (12), compute the dimensionless size D using the values of �ww

and dr=d�ww obtained in the step 3. The first eigenvalue is taken as 1=D [9].
(5) Compute the dimensionless nominal strength rN by (15).
(6) Repeat steps 3–5 until D converges, according to a specified tolerance.
(7) Calculate and output the actual size D ¼ EwcD=rf and the corresponding actual nominal

strength rN ¼ rfrN.
(8) Return to the step 2 and start the analysis for the next dimensionless crack length a.

All the computations are of course conducted in a discrete form corresponding to the chosen
nodal subdivisions of the crack path. In the discrete form, the integrals are approximated by sums
and thus (12) becomes a matrix eigenvalue problem, which is then solved by a standard linear
algebra subroutine.

G. Zi, Z.P. Ba�zzant / International Journal of Engineering Science 41 (2003) 1519–1534 1525

portion of the softening curve. For negative geometries, however, this is not true, and the stress
profiles in Fig. 7 confirm it.

The profiles in Fig. 7 were computed by solving, under the assumption of linear softening up to
the residual stress plateau, the compatibility condition of crack band formulated in terms of the
compliance matrices. The solutions were computed for subsequent small increments of the dis-
placement at the top of specimen. The maximum loads obtained by this much more tedious
analysis agreed with those calculated by the present eigenvalue approach (e.g. Fig. 8(c)), which
provided a check on the correctness of this approach.

In the computed profiles, one can see the location of the FPZ during the loading process.
Further one should note that the locations of the compression resultant at Pmax for the three
specimen sizes are dissimilar, which was shown already in Ba�zzant et al. [13]. For the small size
specimen, the location of this resultant is shown in Fig. 7 by arrow 2. Aside from the embedment
length, this is another reason for geometrical dissimilarity among the three sizes, which was al-
ready taken into account in the previous work [13].

The fact that the geometry is initially negative is manifested by the fact that the FPZ (i.e., the
zone of softening) becomes detached from the notch tip before Pmax is reached. But this is gen-
erally true only if the specimen is not too small. Fig. 7 demonstrates that this situation is achieved,
i.e., the residual stress value is attained at Pmax, even for the smallest specimen. This fact is the
reason why Pmax is influenced not only by the initial portion of the softening curve, as in normal
fracture specimens, but by the entire softening curve.

Fig. 8. (a) The triangular softening law determined by the data fitting, (b) a bilinear softening law chosen with the same

initial slope as the triangular one and (c) the size effects corresponding to the two softening laws, in which the solid line

is for the former, the dashed line is for the latter and the symbols represent nominal strengths obtained by the classical

method.
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lf = S2(1)

π
lch = π

16 W 2(0)

E′w2
f

GF

, lch = K2
c

4f 2
t

(20)

where lch represents Irwin’s characteristic length. Now it should be noted that, in view of
Equations (10) and (13), W(0) ≤ 1, and so a lower bound on the half-length of the fracture
process zone, for any shape of the stress-displacement law, is

lf min = π

16

E′w2
f

GF

(21)

This lower bound was derived in a different way by Planas and Elices (1992, Equations 4.23
and 4.26).

The fact that neither D nor k(α) appears in (20) confirms that the hypothesis of size- and
shape-independence of lf agrees with the neglect of functions b1, b2, . . . , c1, c2, . . . for large
sizes. According to Equations (6) and (9), the nominal strength of the structure, which is a
load parameter defined as σN = P/bD, may now be expressed as

σN = Kc√
D

∫ 1

0

q(ρ) dρ

k[α(ρ)] (22)

If the q(ρ)-profile along with lf and k(α) are known, then σN can be evaluated from (22). In
this manner, the large-size asymptotic size effect curve of the cohesive crack model can be
computed for any given structure geometry provided that the function k(α) characterizing the
geometry is known. For many geometries, this function is given in handbooks (Tada et al.,
1985; Murakami, 1986), and for others it can be adequately approximated by curve-fitting
elastic finite element results.

The size effects can be classified into three cases according to the geometry of the structure.
In each case, the asymptotic size effect can be obtained from the asymptotic expansion of (22)
in terms of the powers of θ , as suggested by Bažant (2001). Only the resulting size effect
laws are listed below. The detailed derivations, including an appraisal of the role of various
higher-order terms, are given by Bažant (2002). The first case is the case of positive geometry
(k′(α) > 0), where the fracture starts from the notch or a pre-existing stress-free (fatigued)
crack. As expected, the analysis leads in this case to the classical size effect law proposed in
Bažant (1983, 1984), i.e.

σN = σ0

(
1 + D

D0

)−1/2

(23)

in which

σ0 = Kc

k0
√

D0
(24)

D0 = γ0lf = γ0

π
S2(1)lch = 4k′

0

k0
I2lf = 4k′

0

πk0

K2
c

f 2
t

I2S
2(1) (25)

with the notations

γ0 = 4k′
0

k0
I2, I2 =

∫ 1

0
q(ρ) ρ dρ (26)
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Figure 1. (a) Superposition of LEFM cracks and (b) notations of the cohesive crack model

structed according to the linear elastic fracture mechanics (LEFM) if it is known how the stress
intensity factor KI and the crack opening profile for a unit load depends on the crack tip loca-
tion. For large enough structures, the asymptotic near-tip crack opening profile corresponding
to the stress intensity factor may be used as an approximation and then it suffices to know
KI as a function of the relative crack length α. The smeared-tip approach is computationally
more efficient and better suited for obtaining analytical asymptotic approximations than the
compliance function approach used by Hillerborg et al. (1976), Petersson (1981) and others
(Needleman, 1990).

Once the asymptotic stress intensity factor density, called the q-profile, corresponding to a
given stress-separation law of the cohesive crack model is established, it can be used for simple
asymptotic solutions for a structure of any geometry for which the stress intensity factor as
a function of α is known. The objective of this paper is to present solutions of the q-profile
for various typical stress-separation laws used for quasibrittle materials. The K-version of the
smeared tip method and the size effect laws derived from it, which were outlined by Bažant
(2001) and derived in detail by Bažant (2002), will be reviewed to introduce the subject.

2. Review of K-Version of Smeared-Tip Method

In the smeared-tip method, one superposes the LEFM solutions of the given structure for
various lengths of sharp cracks (Figure 1a), whose tips are continuously distributed (smeared)
along the assumed crack path. Such superposition is used to represent the solution for a cohe-
sive crack (Figure 1b). Any opening profiles and any stress profiles can be represented in this
way.

(b)

Figure 6: (a) Zi and Bažant’s eigenvalue method [39] and (b) the smeared-tip method [1] to
determine the nominal strengths.

test was carried out following the procedure proposed by Kim et

al. (2013). Prior to the fatigue tests, monotonic tests of five

specimens for each test method were carried out, with displace-

ment control at the rate of 1 mm/min, to determine the static

strengths of concrete. The fatigue tests were carried out with load

control at a frequency of 10 Hz. The loading frequency was

gradually increased to the final frequency of 10 Hz after 20 cycles

to minimise the rate effects. The flexural fatigue tests for each

test method were conducted under three stress levels (S), that is

90%, 80% and 70% of its static flexural strength. All fatigue tests

were performed with stress ratio R ¼ 0:1, which is defined by

R ¼ f min= f max, where f min and f max refer to the minimum and

maximum stress of the sinusoidal load wave in each load cycle

respectively. At each stress level, three specimens were tested.

Fatigue loading was applied on the specimens until fracture of

specimens or 23 106 load cycles was reached.

In order to prevent lateral movement of specimens during the

fatigue test using BFT, three fastening devices were installed

against the support ring, as shown in Figure 1(b). During the tests

for ASTM C 1550 and BFT, strains were measured to verify the

biaxial stress state at the centre of tensile surface of the panel and

to evaluate the deformability according to the number of load

cycles, N : Two strain gauges with a 60-mm gauge length were

used for the strain measurements. Both monotonic and repeated

flexural tests were conducted using a 100 kN servo-hydraulic

actuator.

Results and discussions

Monotonic test results

Under monotonic loading conditions, the fracture of all speci-

mens for the four-point bending test, ASTM C 1550 and BFT

occurred through the locations with the maximum tensile stress.

Whereas the fracture patterns in the specimens of the ASTM C

1550 test were mostly characterised by a threefold symmetric

crack, various fracture patterns were observed in the BFT:

specimens broke into three or two pieces. The fracture strengths

of the four-point bending test, ASTM C 1550 and BFT are

summarised in Table 3. The effects of different test methods on

the concrete flexural strength were confirmed by one-way analysis

of variance (P , 0.001). The results show that biaxial flexural

strengths obtained from ASTM C 1550 and BFT are higher than

those for the four-point bending test, and the biaxial strength

measured by ASTM C 1550 is greater than the strength by BFT.

These findings are in good agreement with the results of Kim et

al. (2012) and Zi et al. (2013).

The modulus of rupture f r is often compared with the square

root of the compressive strength f 9c: For instance, the modulus of

Test methods Thickness of

specimen

(h)

Diameter of

specimen (2R0)

Radius of

Support circle

(a)

Support ring

(a)

Loaded area

(b0)

Loading ring

(b)

ASTM C 1550 48 420 200 — 9 —

BFT 48 420 — 200 — 50

Table 2. Dimensions of the ASTM C 1550 and biaxial flexure test

(BFT) specimens: mm

P

b0

Specimen

h

Loading piston

a

R0

120°

Transfer plate and
pivot support

(a)

P

b

h

f a

R0

Loading ring

Support ring

Fastening device

(b)

Specimen

Figure 1. Schematic of the set-up for (a) the ASTM C 1550 and

(b) the biaxial flexure test
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to be marginal for the large size. The experimental data on 
the uniaxial flexural strengths in Table 3 are optimally fitted 
with ft

∞ = 3.21 MPa (0.47 ksi), Db = 22.69 mm (0.89 in.), 
and r = 1.44.

For the biaxial flexure test and the ASTM C1550 method, 
a stronger size effect was found. When the plate thickness 
increases from 30 to 48 mm (1.18 to 1.89 in.), and from 
48 to 75 mm (1.89 to 2.95 in.), the uniaxial flexural strength 
decreases only by 18.8 and 4.5%, while the biaxial flexural 

strength decreases by approximately 17% and 19%, respec-
tively. In other words, at large sizes, the reduction of tensile 
strength for the biaxial stress states was significantly greater 
than it was for the uniaxial stress states.

For reasons of simplicity, it is often preferred to use the 
uniaxial test method, rather than the biaxial ones, even if 
the actual stress condition is biaxial. Because the uniaxial 
strength is less than the biaxial strengths, the choice of 
the uniaxial test method would make an error on the side 
of safety. This might not be true for large sizes, however, 
because the size effect in biaxial loading is stronger, and the 
safety margin would then be insufficient.

ANALYTCIAL INVESTIGATION
An accurate analysis of the size effect in these three- 

dimensional failures would be rather complicated and not 
easy to interpret. It is again assumed that, as in uniaxial beam 
bending, the maximum load is reached before microcracking 
localizes into a distinct macrocrack. In other words, the size 
effect is assumed to be of Type I. Although the Type I size 
effect can be derived as a limit case of the analysis of energy 
release due to fracture,4 it can be most simply explained and 
formulated on the basis of stress redistribution due to mate-
rial heterogeneity. At the tensile face of a plate in bending, 
there is a boundary layer of a certain thickness h which 
is a material property, and is equal to approximately two 
maximum aggregate sizes da (Fig. 8). In this boundary layer, 
in which macroscopic fracture will develop during postpeak 
softening, the stress and strain field is highly scattered. Due 
to distributed microcracking, the boundary layer behaves, 
before fracture localization, as quasiplastic, and thus causes 

Table 3—Tensile strengths obtained in experiments, MPa (ksi)

No.

Small Medium Large

Four-point 
bend test

Biaxial 
flexure text

ASTM 
C1550

Four-point 
bend test

Biaxial 
flexure text

ASTM 
C1550

Four-point 
bend test

Biaxial 
flexure text

ASTM 
C1550

1 5.33 (0.77) 8.16 (1.18) 12.43 (1.80) 5.23 (0.76) 6.35 (0.92) 11.62 (1.68) 4.17 (0.60) 5.57 (0.81) 8.29 (1.20)

2 5.87 (0.85) 8.01 (1.16) 10.39 (1.51) 4.45 (0.65) 7.28 (1.06) 10.29 (1.49) 4.45 (0.65) 5.80 (0.84) 7.76 (1.13)

3 5.93 (0.86) 8.32 (1.21) 13.66 (1.98) 4.79 (0.69) 6.67 (0.97) 11.15 (1.62) 4.35 (0.63) 5.13 (0.74) 9.84 (1.43)

4 5.50 (0.80) 9.16 (1.33) 11.98 (1.74) 4.22 (0.61) 6.38 (0.93) 10.58 (1.53) 4.21 (0.61) 5.43 (0.79) 8.44 (1.22)

5 6.03 (0.87) 8.15 (1.18) 11.24 (1.63) 4.83 (0.70) 5.57 (0.81) 8.75 (1.27) 4.25 (0.62) 5.60 (0.81) 8.47 (1.23)

6 4.87 (0.71) 8.00 (1.16) 10.95 (1.59) 4.08 (0.59) 6.37 (0.92) 9.14 (1.33) 4.34 (0.63) 4.96 (0.72) 10.03 (1.45)

7 5.70 (0.83) 7.83 (1.14) 9.91 (1.44) 3.78 (0.55) 6.92 (1.00) 10.28 (1.49) 4.31 (0.62) 5.97 (0.87) 7.67 (1.11)

8 5.90 (0.86) 8.90 (1.29) 12.35 (1.79) 4.62 (0.67) 7.63 (1.11) 11.30 (1.64) 3.65 (0.53) 5.93 (0.86) 8.37 (1.21)

9 5.00 (0.73) 7.83 (1.14) 10.80 (1.57) 4.90 (0.71) 7.76 (1.13) 10.68 (1.55) 4.52 (0.66) 5.36 (0.78) 8.96 (1.30)

10 5.17 (0.75) 9.06 (1.31) 11.61 (1.68) 4.58 (0.66) 6.22 (0.90) 9.59 (1.39) 4.34 (0.63) 5.49 (0.80) 8.83 (1.28)

11 4.97 (0.72) 8.14 (1.18) 9.34 (1.35) 3.87 (0.56) 7.43 (1.08) 8.75 (1.27) 4.15 (0.60) 6.03 (0.87) 9.16 (1.33)

12 5.17 (0.75) 7.55 (1.09) — 4.51 (0.65) 7.71 (1.12) — 4.16 (0.60) 5.48 (0.79) —

13 5.20 (0.75) 8.53 (1.24) — 3.41 (0.49) 7.14 (1.04) — 4.18 (0.61) 5.85 (0.85) —

Average 5.43 (0.79) 8.28 (1.20) 11.31 (1.64) 4.41 (0.64) 6.88 (1.00) 10.19 (1.48) 4.24 (0.61) 5.59 (0.81) 8.71 (1.26)

Standard 
deviation

0.39 (0.06) 0.48 (0.07) 1.21 (0.18) 0.49 (0.07) 0.65 (0.09) 0.96 (0.14) 0.20 (0.03) 0.3 (0.04) 0.72 (0.10)

Coefficient of 
variation

0.07 0.06 0.11 0.11 0.10 0.09 0.05 0.06 0.08

Fig. 7—Size effect obtained from tests at three different sizes.
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Figure 7: The biaxial flexure test (BFT) to measure the biaxial tensile strength of concretes
[11, 44].
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reinforcement are shown in Fig. 10. By the definition, if the chlo-
ride concentration, Cfc , becomes equal to the threshold value,
Ccar
th , the corrosion of the reinforcement would be initiated. Due

to the carbonation-induced change of pore structure and the bind-
ing capacity of chloride ions, the apparent diffusion coefficient of
chloride ions in the carbonated zone increases by Eqs. (29) and
(31). Meanwhile, the bound chloride ions are released to the pore
solution during the process of carbonation, according to Eq. (1).
These effects increase the concentration of free chloride ions. The
process of carbonation consumes the dissolved calcium hydroxide,
which reduces the threshold value as given in Eq. (36). In this illus-
trative example, this reinforced concrete section designed for
50 years service life would have the durability problem only less
than 30 years later.

6. Conclusions

1. A comprehensive numerical model for the combined carbona-
tion and chloride ingress is developed. The transport of carbon
dioxide, chloride ions, heat and moisture are coupled in this
model.

2. We propose a new method to calculate the degree of carbona-
tion and pH value based on the chemical mechanism of carbon-
ation. The reaction of carbon dioxide with calcium hydroxide
and other hydration products, such as CSH, is considered in this
method.

3. A set of empirical formulae for the change of peak radius size
and porosity is proposed to consider the influence of carbona-
tion on the change of pore structure.

4. The reduction of the chloride binding capacity of concrete is
included in the numerical model. The Langmuir isotherm is
modified to consider the effect of carbonation to the binding
capacity.

5. Several sets of experimental data are compared with the predic-
tion by the numerical model for its verification. The results sup-
port the validity of this model.

6. The numerical results show that, the initiation time of rein-
forcement corrosion is reduced significantly by this combined
mechanism. In the example considered in this study, the initia-
tion time of the reinforcement corrosion is reduced about 40%.
And, a higher fly ash content causes a more pronounced effect
on the carbonation-induced acceleration of chloride ion ingress.
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Appendix A. Mass exchange rate in the carbonation of concrete

According to the literature [36], the right hand sides of Eqs. (2)–
(5) are given by

Ich ¼ /f wrcCCO2HðCch;dÞ ðA:1Þ

ICSH ¼ 3rCSH ðA:2Þ

rCSH ¼ ackCSHVCSHCCO2CCSH ðA:3Þ

Id ¼ 0:5/f wVchkchacðCeq
OH� � COH� ÞCch;s ðA:4Þ

Fig. 8. Effect of fly ash replacement on free chloride content distribution according
to different depths.

Fig. 9. Influence of carbon dioxide concentration on the surface to the distribution
of chloride ion concentration in concrete after 50 years.

Fig. 10. Initiation time of corrosion.
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6.5. Expansive pressure and crack patterns

Expansive pressure versus exposure time is displayed in Fig. 18.
This figure shows that the change in expansive pressure is highly
nonlinear. This indicates that the pressure arising from the

non-uniform corrosion of the reinforcement is difficult to predict
with any simple analytical model because of the strong coupling
of rust distribution and concrete damage.

Fig. 19 presents the pattern of cracks in the concrete caused by
the generation of rust. The first crack was found near the corner

Fig. 11. Comparison of cracking patterns of concrete cover between the results of (a) experiment, (b) our model, and (c) the uniform displacement-control model.

Fig. 10. Comparison of results obtained by our model with Zhao et al.’s data for the change of corrosion-induced pressure corresponding to the crack length with (a) different
thicknesses of concrete cover (fixed r0 = 10 mm), and (b) different initial radii of reinforcement (fixed ct = 35 mm).

X. Zhu, G. Zi / Construction and Building Materials 137 (2017) 330–344 339

Figure 8: The reduction of durability life under combined durability attacks [35] and an example
of chemo-physical model for the entire process of corrosion [34].
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FIG. 1. (Left) Idealized Cubic Array of Expanding Spherical
Glass Particles Surrounded by Flaws and Dominant Growing
Cracks Filled by Pressurized ASR Gel; (Right Top) One Cell with
Glass Particle and Crack; (Right Bottom) Layer of Reacted
Glass (ASR Gel Layer Growing into Glass Particle) and Layer of
ASR Gel Forced into Capillary Pores of Concrete

FIG. 2. (a) Idealized Evolution of Crack Front from Initial Stage
of Shallow Annular Cracks Around Glass Particle to Terminal
Stage of Small Circular Uncracked Ligaments; (b) Superposi-
tion Argument Revealing Equivalence of Crack Pressurization
and Stress Externally Applied on One Cell

VOLUME OF REACTION PRODUCT

The volume Va of glass that has undergone ASR, per unit
volume of concrete, depends on a number of variables: Va =
F(Vg, D, p, T, w, t), in which Vg = total volume of glass ag-
gregate per unit volume of concrete (volume fraction); D =
diameter of glass particles; p = pressure on the surface of the
glass particle; T = temperature; w = specific water content in
the pores per m3 of concrete; and t = time. Because we are
interested only in the volume Va after the lapse of a certain
fixed time t (2 weeks in the case of the ASTM test), the de-
pendence of F on t need not be considered. As a simplification,
it seems reasonable to neglect the variables w, T, and p. Thus,
it will be assumed that

for D/2 > R : V = V ; for D/2 # R V = V (1a,b)cr a r cr a g

in which
3 3 3¯ ¯V = (p/6)[D 2 (D 2 2R ) ]N, N = V /(pD /6) (2)r cr g

Here N̄ = number of glass particles per unit volume of con-
crete; Vr = volume of the layers (spherical shells) that have
undergone ASR in all the particles per unit volume of con-
crete; and Rcr = constant = critical radius = radius of the largest
spherical glass particle that will get fully penetrated by ASR
within the fixed duration of the accelerated ASTM test (Rcr is
determined by water diffusion to the reaction front and the
kinetics of the chemical reaction). Substitution of (2) into (1)
provides

3
2Rcrfor D/2 > R : V (D) = 1 2 1 2 V (3a)cr a gF S D GD

for D/2 # R : V (D) = V (3b)cr a g

STRESS INTENSITY FACTOR IN INITIAL AND
TERMINAL STAGES

For the sake of simplicity, we consider a regular array of
cubical cells, each containing one spherical glass particle em-
bedded in the matrix of hardened cement mortar. The number
of glass particles per unit volume of concrete is N̄ = Vg /(pD3/
6), and for a cubic array of particles N̄ = 1/s3, where s =
particle spacing. Thus, D = (6Vg /p)1/3s. The term Vg is assumed
to be constant, which means that the cells with glass particles
of various sizes are geometrically similar (i.e., D/s = constant).
In numerical calculation, the case Vg = 10% will be assumed,
for which D/s = 0.58.

The ASR proceeds from the surface of the particle inward.
The expanding layer of the solid ASR gel at the surface of the
particle applies radial pressure p on the surrounding cement
mortar. The pressure causes cracks to initiate from preexisting
flaws at the surface of the particle, as shown in Fig. 1 (left).
For the sake of simplicity, the crack planes in all the cells are
assumed to be parallel, and then each periodically repetitive
cell represents the overall material behavior. The ASR gel also
penetrates into the cracks and applies pressure p on their sur-
faces.

In view of symmetry, the analysis may be restricted to a
single cubical cell containing a spherical glass particle in the
center [Fig. 1 (right)]. The cement mortar is separated from
the glass by a growing layer of ASR gel, which provides no
bond. As a simple idealized geometry, one may consider an
initially circular ring crack to grow from the spherical void
containing the glass particle [Fig. 2(a)].

To figure out the stress intensity factor KI due to p, it is
helpful to realize that the stress field caused by pressure p on
the crack and void surfaces is a superposition of the stress
field caused by the volumetric (hydrostatic) stress p applied
by the gel onto the void and crack surfaces and the stress field

caused by externally applied tensile stress s = 2p [Fig. 2(b)].
The former field is a homogeneous field of hydrostatic pres-
sure p, for which KI = 0, and so KI due to p alone is the same
as KI due to s = 2p. Hence, what determines KI is not s and
p individually but solely the sum s 1 p, where s = externally
applied tensile stress and p = hydrostatic stress.

The KI caused by the normal applied stress components par-
allel to the crack plane can be neglected (it is exactly zero in
the limit D/c → 0). This means that the KI due to pressure p
applied on the crack and void surfaces is nearly the same as
the KI due to uniaxial applied stress s normal to the crack
plane. The applied stress s is understood as the average stress
acting on the planes between the adjacent cells.

Let the crack growth be characterized by the dimensionless
damage variable v = Ac /s2, where Ac = area of the crack and
the spherical void in one cubical cell of size s. Then, for rea-

Figure 9: The chemo-fracture model to explain the ASR of glass particles [3] and the improvement
of ASR resistance with glass powder [17, 18, 33].

21022, in ISO/TC71/SC6 as shown in Fig. 8 [11]. This is an axisymmetrical generalization of

the four-point bending test to measure the biaxial tensile strength of concrete by using only one

actuator [16, 19, 20, 32, 44]. Using this new test method, he proved that the size effect in the

biaxial condition is stronger than the uniaxial condition [45]. This characteristics was also studied

by the recently developed microplane model M7 [21] as well.

Currently, his research group has shown interest toward the subject of the combined durability

of concrete structures in which more than one durability issue are coupled to drive the loss of

the durability resistance. He showed that the durability life could be reduced significantly when

carbonation and migration of chloride ions were considered simultaneously [35–37]. That reduction

was more than 50% of the durability life when they were considered separately. He also developed

a fine chemo-physical model to simulate the entire corrosion process of the reinforcement [34].

This model reproduced various experimental data reported in the literature successfully.

His expertise on mechanics was also very useful for finding the pozzolanic aspect of glass powder

as a partial cement substitute. During his Ph. D., he developed a chemo-fracture theory to explain

the influence of the particle size on the alkali-silica reaction (ASR) damage [3]. He suggested that
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analyzed one-dimensional temperature profiles using a linear heat
transfer model. Lagos et al.~1995! extended the heat transfer
model to two dimensions and calculated the heat generation rate
based on the standing wave normally incident to a homogeneous
concrete wall. They smeared the reinforcing bars into an infinitely
thin layer whose reflection factor was determined according to the
area–ratio of the bars. They assumed the dielectric properties of
concrete to be constant over the thickness of concrete during the
decontamination process. However, they could not study the de-
velopment of pore pressures because they did not model the mois-
ture transfer coupled to the heat transfer. They assumed the sur-
face layer to spall off when the compressive stress in the direction
parallel to surface under a perfect restraint in that direction ex-
hausts the compressive strength of the concrete. They did not take
into account the deformation of the body surrounding the heated
zone.

The practical objective of this study, which was summarized at
a recent conference~Bažant and Zi 2001!, is twofold:~1! to
present a model-based mathematical analysis of microwave heat-
ing and spalling of concrete; and~2! to apply it to the decontami-
nation process that takes into account not only the thermal defor-
mation and surface layer restraint but also the moisture transfer,
pore pressures, and overall deformation of the structure. The
theory will be explained in this paper, while the companion paper
that follows ~Zi and Bažant 2003!will present the numerical ap-

plication. The constitutive, fracture, thermal, and diffusion mod-
els of concrete applied here are of course known. Nevertheless,
since these models exist in different variants, and since some
minor modifications were made in them in this project, they are
briefly described in the Appendices of parts I and II of this study.

Heat Generation by Transverse Electromagnetic
Waves

The microwaves represent electromagnetic waves of frequency
300 MHz–30 GHz. The energy carried by electromagnetic waves
through surfaceS is

2E
S
P•dS52E

S
EÃH•dS5

]

]t EV
~we1wm!dV1E

V
psdV.

(1)

~e.g., Cheng 1983!whereP5Poynting vector characterizing the
power density of the electromagnetic wave,E5electric field
strength vector;H5 magnetic field strength vector; dS5ndS,
where dS5surface element andn5 its unit normal;V5volume of
body; e5e82 i e95complex dielectric permittivity;m5m82 im9
5complex magnetic permittivity;s5ve95dielectric conductiv-
ity; v52p f 5angular velocity; f 5frequency, we5«E2/2
5electric energy density;wm5mH2/25magnetic energy density;
ps5sE25ohmic power dissipation;t5time; andV5volume.

Because the heat generation rate is a function of the electric
field strength, one needs to solve the electric field strength vector
E to obtain the heat source. On exit from the microwave applica-
tor, the waves are guided and simple. But farther away the elec-
tromagnetic field can become complicated@Fig. 1~a!#. An accu-
rate solution would have to be obtained numerically from the
Maxwell equations, which is not a simple affair. For our purpose,
however, an approximate solution can be obtained by using the
solution of a standing electromagnetic wave, particularly the so-
lution of a transverse electromagnetic wave normally incident to a
half space of a dielectric material, the concrete. The heat source
calculated in this manner needs of course some further adjustment
to obtain the proper power distribution~Thuéry 1992!.

Electric Strength of Standing Electromagnetic
Waves

Let us now review the solution of the transverse electromagnetic
waves, which form a standing wave pattern. The propagation of
electromagnetic waves is governed by the Maxwell equations in
which the electric field strength and magnetic field strength are
coupled. Because the concentration of dielectric sources due to
ferromagnetic materials in concrete is usually negligible~Li et al.
1993!, the electromagnetic wave generation inside concrete may
be neglected, which means that the Maxwell equations become
decoupled~von Hippel 1954!;

“
2E5em

]2E
]t2 (2a)

and

“
2H5 em

]2H
]t2 (2b)

The transverse electromagnetic waves may be considered to be
parallel, and their incidence to the concrete surface to be normal.

Fig. 1. ~a! Sketch of microwave power decontamination system;~b!
transmission~t! and reflection~r! of transmission electron micros-
copy wave at interfaces of different media;~c! typical layout of con-
crete wall and wave reflection by reinforcing bars and aggregates;
and ~d! partition of concrete body into reinforced segments and un-
reinforced segments
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minus the hygrothermal strain~strain produced by changes of
temperature and water content!. It is found that the maximum
principal mechanical strain in the surface layer exceeds 0.005 in
tension and the strain state is essentially biaxial~Fig. 8!. This
strain value is much higher than the typical strain at peak in
uniaxial tension~about 0.0002!. It follows that the concrete must
undergo postpeak softening and suffer disintegration by cracking.
The compressive stress induced by the temperature increase is
resisted not only by radial and circumferential biaxial compres-
sion generated by the resistance of the cold concrete mass sur-
rounding the heated zone, but also by tensile stress in the circum-
ferential direction of the axisymmetric mesh caused by radial
expansion~a situation similar to that analyzed by Ulm et al.,
1999!.

Is Spalling Triggered by Pore Pressure
or Compressive Thermal Stress?

The question of the main cause of spalling of the surface layer of
a rapidly heated concrete wall has been the subject of many de-
bates. One school of thought, initiated by Harmathy~1965, 1970!,
Harmathy and Allen~1973!, Li et al. ~1993!, and Lagos et al.
~1995!, holds that the pore water cannot escape fast enough~a
phenomenon called ‘‘moisture clog’’!and thus develops high
vapor pressures which cannot be resisted by the tensile strength of

concrete. Another school of thought~Bažant 1997! is that the
thermal expansion of the saturated heated zone, resisted by the
cold concrete mass that surrounds the heating zone, leads in the
surface layer to very high compressive stresses parallel to surface
which either crush concrete, or cause the compressed surface
layer to buckle, or both.

The relative significance of these two mechanisms must of
course depend on the type of problem, and can be different for
microwave heating in the bulk of concrete and for conductive
heating by fire. In the present problem, the highest pore pressure
calculated has the value 2.0 MPa, which causes in concrete a
hydrostatic tension of about 0.2 MPa. This value is not enough to
initiate spalling concrete. Besides, as soon as cracks start to form,
the volume available to pore water rapidly increases~by orders of
magnitude!, which must cause a rapid drop of pore pressure be-
fore the cracks can become large and open widely~Bažant 1997!.

So it appears that the pore pressure development cannot be the
main cause of spalling, although it is not a negligible factor in the
triggering of spalling. The main cause must be the compressive
stresses along radial lines emanating from the center of the heated
zone. These stresses, engendered by the resistance of cold con-
crete to the thermal expansion of the heated zone, reach values as
high as about 50 MPa@Fig. 8~b!#, according to the present analy-
sis. This is certainly enough to cause compressive crushing as
well as buckling of the compressed layer.

Application of Finite Volume Method to Heat and
Water Transfer in Concrete

Since the finite volume method~Eymard et al. 1998, 2000!has
not been used for the coupled heat and water transfer problems of
concrete, its application will now be described. In this method,
the domain is divided into discrete control volumes~Fig. 9!. The
interfaces~or boundaries!of a control volume are placed midway
between adjacent representative points~which is generally ac-
complished by Voronoi tessellation, although that approach is not
needed for the regular node arrangement used here!. The discreti-
zation equations are derived by integrating Eqs.~19! and ~20! of
Part I over the control volume shown in Fig. 9~a!, and over the
time interval fromt to t1Dt

~w0
i 11,m112w0

i !1cx~Je2Jw! i 11,m111cy~Jn2Js!
i 11,m11

5I ~w!
i 11,m11 (3)

Fig. 6. Uniaxial compression data of 10.17 cm320.03 cm cylinder
tested by Jansen and Shah~1997! ~circles! and its optimal fitting
~solid line!by finite element simulation in which axisymmetric quad-
rilateral elements of size 5 mm by 5 mm are used;E548.5 GPa,
k150.000125,k25160.0,k356.4, andk45150.0

Fig. 7. Contour plot of mechanical strain«1 after 10 s heating, in
which deformation is exaggerated by 100

Fig. 8. ~a! Distribution of radial stress with respect to height and~b!
evolution of radial stress at center of heated zone by time
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Figure 10: Decontamination of the radionuclides from the concrete surface by using microwave
power [2, 40].
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layer was detached from the SiO2/Si substrate using
adhesive tape, it was placed on a polydimethylsiloxane
(PDMS) film flattened by a stretching stage. For en-
hanced deformability, the metal interconnects were
formed in narrow geometries; this design allows the
integrated mesh to accommodate strains created by
relaxing the prestrain, as well as any subsequent
deformation, in a way that strain isolates the active
devices.3�7 The narrow interconnects develop into
noncoplanar, arc shapes, as they accommodate defor-
mations due to return of the flat, stretched PDMS to its
original hemispherical shape. After this transition, it
was possible to further deform the system into other
different shapes, in a dynamic, reversible fashion. For
example, the convex layout could be transformed into
an extremely stretched one by externally applied
physical force.
An optical microscope image of a representative NW

inverter appears in Figure 2a. The inverter consisted of
an n-type FET, a resistor with SnO2 NW channels, and
four individual electrodes (VDD, Vin, Vout, and ground).
The electrodes were designed for evaluating the elec-
trical characteristics of the FET, the resistor, and the
inverter. After patterning these electrodes by photo-
lithography, SnO2 NWs were transferred. The presence
of aligned NWs was confirmed in the channel and in
the device structure by scanning electron microscopy
(SEM, Figure 2b). The NWs in the channels of the FET
(dotted black) and resistor (dotted red) were aligned

along the channel direction perpendicular to the elec-
trodes. The density of NWs directly bridging the elec-
trodes was estimated to be 2�3NWs/μm in both cases.
Some NWs appeared to have been broken during the
sliding transfer or lift-off.
An inverter array transferred onto a hemispherical

PDMS membrane was stretched with a lab-built stage
(Figure 3). The radial tensioning provided by this stage
gradually expanded the hemispherical PDMS until flat;
its paddle arms mounted into a raised rim formed on
the PDMS substrate. The SEM images show that the
device morphology changed during transformation
into hemispherical convex and concave shapes. Bend-
ing radii of hemispherical mold on each shape are
indicated in the photographs. When the device array
was on a flat film (Figure 3a), that is, no strain on the
devices, the devices and their interconnections lie flat
on the surface. Releasing the strained PDMS caused the
interconnects to adopt arc-shaped geometries, as a
consequence of accommodating the strain associated
with the shape change (Figure 3b). Because of the
relative narrow widths of the interconnections (w =
40μm) compared to the activedevice areas (w=220μm),
the release of surface strain was concentrated at the
interconnects. The prestrain was estimated to be ca.

21% from the changes (from 230 to 190 μm) of length
observed in the SEM images. After converting the
convex shape into a concave shape by application of
physical force, the average distances between the

Figure 3. Photographs of the PDMS substrate mounted on a lab-built stretching stage that supports the device arrays in flat
and in hemispherical convex/concave shapes (left images). SEM images of the inverter array and suspended SnO2 nanowires
inside the channel on flat (top), hemispherical convex (middle), and concave (bottom) surfaces (right black andwhite images).

A
RTIC

LE

materials become deformed, including increasing the adhesion
between the NWs and the substrate,17−19 hybridization with
carbon materials,20−22 and manipulation of NW morphol-
ogy;23−25 however, most prior studies have reported only the
uniaxial stretchability of the conductors. It is unrealistic to
expect the directions of human movement to match the
directions of uniaxial stretchability in real applications. Biaxial
tensile stretching is a much harsher, but more realistic,
condition than uniaxial tensile stretching because it can
mimic multiaxial stretching in human movement; furthermore,
a material’s response against stretching is a function of stress
conditions, and predictions based on the results of uniaxial
tension tests often fail in biaxial tension tests. Therefore, to

utilize STCs in practical applications, development of biaxially
stretchable STCs is necessary.
Biaxial or omnidirectional stretchability has been investigated

for the development of nontransparent conductors. The
conclusions of most previous studies that achieved biaxial
stretchability have been unclear, due to the use of excessive
amounts of relatively flexible carbon materials, such as carbon
nanotubes.24,25 Only a few working groups have researched
biaxially stretchable transparent electrodes, and relatively brittle
Ag NWs were used in these studies;26,27 that is, Ag NW-based
transparent conductors were prepared by biaxially prestraining
a solid substrate, i.e., polydimethylsiloxane (PDMS), whereby
Ag NWs are deposited and the substrate then released. This
solid-supported (SS) prestrain method is a well-known process

Figure 1. (a) Biwavy nanowire (NW) fabrication process. (b) Balance between the forces on the floating NWs and the surface of the water. (c)
Elastic two-dimensional (2D) mass−spring network model with mass points (filled circles) and elastic springs. Scanning electron microscopy (SEM)
images of (d) straight NWs, (e) uniaxially compressed (uniwavy) NWs, and (f) biaxially compressed (biwavy) NWs. All scale bars are 1 μM. Scatter
plot of NW waviness as a function of the NW angle (direction) for (g) straight NWs, (h) uniwavy NWs, and (i) biwavy NWs. (j) Optical
transmittance spectra and sheet resistances for the prepared NW-based electrodes. (k) Photographs of the glowing light-emitting diode (LED) lamp
connected to the balloon on which biwavy NWs were deposited. The LED lamp was glowing before and after the inflation of the balloon, indicating
that the NW film was conductive under biaxial strain.
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Figure 11: Mechanics for the design of various stretchable devices.

when glass was a form of fine powder, there would be no ASR damage. Later, he developed a

series of mix design in which 10 to 20% of cement was replaced by glass powder. His mix-design

containing glass powder showed excellent resistance to various kinds of durability attacks, such as

chloride ion penetration, freeze-thaw, ASR damage, etc. [17, 18, 33]; see Fig. 9.

Multi-physics cross-field

Driven by the synthetic nature of modern engineering, as pointed out by M. A. Biot, Zi tries to

consider problems from the view point of multi-physics rather than posing an extreme specializa-

tion. His first multiphysics project was decontamination of radionuclides from concretes by using

microwave power as shown in Fig. 10. He developed a unified model in which all of electromagnetic

field, heat and mass transfer, fracture and damage were coupled to simulate what happened in

the real practice of the technology [2, 40].

His research activity is not limited to the boundary of the construction field although he is

most active in the field of civil engineering. His research group is in a close collaboration with a

chemical engineers group for the subject of stretchable electronic devices, such as semi-conductors,
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supercapacitors, etc. [8–10, 12–15, 23, 29]. Two examples are shown in Fig. 11. Such devices should

be designed suitably to work in function within a specified range of deformation. The mechanical

analysis and prediction are essential in this new type of devices.
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