The failure mechanism of a hollow bridge deck which is made of glass fiber reinforced polymer(GFRP) is investigated using both experiments and analysis. While the load-displacement behavior of the deck in the transverse direction shows a strong nonlinearity even in its initial response with relatively small magnitude of loads. In order to improve the structural behavior of the deck in the transverse direction, we suggested that the empty space of the bridge deck is filled with a foam and investigated experimentally the static behavior of the orthotropic bridge deck which is made from GFRP and polyurethane foam. It is found that although the elastic modulus of the foam compared to that of the GFRP is about the order of 10^{-3}, the structural behaviors in the weak axis such as nominal strength, stiffness, etc. are greatly improved. Owing to the low mass density of the foam used in this study, the bridge deck is still light enough with the improved structural properties.

Keywords: FRP, orthotropic bridge deck, weak axis, foam, static behavior

1. 서 론

FRP 소재를 활용한 교량 바닥판은 기존의 교량 바닥판이 갖고 있는 유지관리 및 내구성의 문제를 해결해 줄 뿐만 아니라 하중의 감소와 시공 및 교체의 용이성 등을 확보해주기 때문에 최근에 그 연구가 활발하게 진행되고 있다. 한국건설기술연구원에서는 2002년부터 총 5개년에 걸쳐서 섬유강화 플라스틱(FRP) 소재로 제작된 사각형 폭포 교량 바닥판을 개발하였으며, 바닥판의 전체적인 성능검증과 실용화 연구가 이루어졌다. 최근에는 대부분의 FRP 바닥판이 내재하는 이방성 특성을 고려하여 취약 방향인 교체(이하 약축이라 정함) 방향 파괴과정과 그 데카니즘에 대한 연구도 이루어졌다(한국건설기술연구원, 2005; 지광승 등, 2004; 지광승 등, 2006).

* 정원주 · 고려대학교 사학환경시스템공학과 교수 E-mail: g-zi@korea.ac.kr
** 고려대학교 사학환경시스템공학과 석사과정
*** 정원주 · 한국건설기술연구원 구조연구부 수석연구원 · 공학박사
**** 한국건설기술연구원 구조연구부 선임연구원 · 공학박사

906_22. Nonlinear Behavior and Fracture in Concrete and Composite
본 논문에서는 기존에 개발된 사각형 중공 FRP 바닥판에 대해서 웨브의 폐진지의 연결부에 소성품자를 도입한 간단한 구조모델을 이용하여 압축방향 파괴모드를 검토하였으며, 압축방향의 구조가동을 개선하기 위해서 바닥판의 중공 내부를 구조용 풍(foam)으로 채전하여 촉진품의 유무와 풍의 강도에 따른 압축방향 정적거동 특성을 실험적으로 분석하였다. 또한 웨브의 개수에 따른 파괴가동을 비교하여 내부촉진 FRP 바닥판에서 웨브의 역할을 파악하였다.

2. 사각형 중공 FRP 바닥판의 압축방향 파괴모드

한국건설기술연구원에서는 그림 1(a)와 같이 중공 FRP 바닥판의 압축방향의 강성을 정량적으로 계측하고자 정적 힘 시험을 실시하였으며, 그 결과 그림 1(b)와 같이 웨브와 폐진지의 연결부가 단소성화하여 인하하여 조기에 파괴되었다. 이는 폐진지와 웨브의 구성영유가 서로 연속되도록 제작하기는 힘들기 때문에 연결부가 완전할 수 없는 사출공형의 특성에 기인하며, 실제 시장에서도 웨브의 설유가 폐진지에 완전하게 연결되지 않고 단지 일정 길이로 연장된 후 메트릭스에 합침되었다.

그러면 본 장에서는 바닥판의 압축방향 파괴가 불완전한 웨브와 폐진지의 연결에 따르다고 가정하고, 웨브-폐진지 연결부에 그림 2와 같은 단소성 모델을 적용하였다. 그림에서 설립은 완전소성모델, 폐진은 영화소성모델, 일반화선은 경화소성모델을 나타낸 것이며, 본 연구에서는 FRP의 취성적인 재료성을 고려하여 영화소성 모델로 가정했다. 폐진지와 웨브의 연결가동이 바닥판의 하중-변위선도에 미치는 영향을 분석하는 것이 주목적이므로, 문제를 간소화하기 위해 연결부의 상위에 따라 다른 값을 취하는 최대 모멘트 강도

<p>| 표 1 폐진지와 웨브 FRP의 균질화된 물성치 |</p>
<table>
<thead>
<tr>
<th>구분</th>
<th>폐진지</th>
<th>웨브</th>
</tr>
</thead>
<tbody>
<tr>
<td>탄성계수 (GPa)</td>
<td>(E_{11})</td>
<td>25.491</td>
</tr>
<tr>
<td></td>
<td>(E_{22})</td>
<td>15.998</td>
</tr>
<tr>
<td></td>
<td>(E_{33})</td>
<td>14.40</td>
</tr>
<tr>
<td>포아송비</td>
<td>(\nu_{12})</td>
<td>0.255</td>
</tr>
<tr>
<td></td>
<td>(\nu_{23})</td>
<td>0.291</td>
</tr>
<tr>
<td>전단계수 (GPa)</td>
<td>(G_{12})</td>
<td>7.131</td>
</tr>
<tr>
<td></td>
<td>(G_{23})</td>
<td>4.238</td>
</tr>
<tr>
<td>성우등항수</td>
<td>(V_f)</td>
<td>0.65</td>
</tr>
</tbody>
</table>
그림 3과 같은 2차원 프레임 요소의 재해형 변위를 순차적으로 단조 증가시키면서 각 연결부의 모멘트를 계산하였으며, 만약 내부모멘트가 소성모멘트 강도를 초과하면 해당 프레임 요소를 제거하고 양 절점에 그림 2의 모멘트를 재한한 후 트리스 요소가 삽입했다. 각 불안정 점 사이에서 소성에너지가 완전히 소산됐다고 가정하면 트리스 요소와 탄성해석 공동으로도 전체적인 헤중-변위선도를 계산할 수 있으며 (Bazant와 Guo, 2002). 이렇게 산출한 헤중-변위선도가 그림 4이다. 그림 4에서 변호가 떨어진 불안정 점들은 그림 3의 소성 에너지 발현에 기인한다. 물론, 여기에는 무수히 많은 소성에너지가 존재할 수 있으며, 본 결과는 그 중 하나에 불과하다. 그림 4에서 각 극 점 이후 이어붙여서 갈을리는 수직으로 도시되었으나 소성 에너지의 영향과는 다르게 다양한 과거기를 가질 수 있다.

그림 3에는 변위가 10배 확대된 변형모습과 각 소성에너지의 발생여서 및 역산을 통해 얻어진 소성모멘트 값이 400-1200 Nm 가지 표시되어 있다. 첫 번째 소성에너지의 그림 1b와 같이 원쪽에서 3번째 웨브의 아래쪽 연결부에서 발생하였다. 각 소성에너지가 형성될 때마다 내부 단면력의 재분배로 인해 헤중-변위선도에는 그림 4와 같이 급격한 변화가 발생한다. 이는 소성에너지가 발생된 후 구조물에 저장된 탄성변형에너지가 다른 부분으로 재분배되면서 발생하는 현상이며, 스냅백도 발생할 수 있지만, 본 연구에서는 스냅백의 헤중-변위경로는 추적하지 않았다. 그림 3의 좌측 하단 그림과 그림 4의 우측 하단 그림은 웨브-플랜지 연결부가 파괴될 때의 과거에너지의 나타낸 것이다.

![Diagram](image)

그림 3 10배 확대된 변형 및 소성에너지 발생여서

그림 4 소성에너지 모델에 의한 헤중-변위선도

그러므로 본 바닥판의 약축방향 강도를 증진시키기 위해서는 연결부와 웨브의 헤 강도를 크게 증진하거나 연결부에 결합되는 모멘트를 감감할 수 있는 방법이 필요하며, 본 연구에서는 후자의 경우인 모멘트를 경감시키는 방안을 강구하였다. 웨브-플랜지 연결부의 파도한 모멘트 발생은 그림 3과 같은 파도한 점단변형에 기인하므로, 바닥판의 전단 강성은 증진시키도록 해결될 수 있다. 그러므로 본 연구에서는 약축방향의 견고물을 보강하고 과거강도를 증진시키기 위해 그림 5와 같이 중공 내부를 구조용 폴(foam) 재료로 채웠으며, 해석 및 실험을 통해서 그 성능을 확인하였다. 그림 6은 폴 중점에 의한 개선효과를 예측하기 위해 다양한 폴의 탄성계수를 적용하여 바닥판의 견고성을 해석한 결과이다.
3. 시험체 준비 및 시험 방법

시험체는 그림 7과 같이 중공 시험체, 밀도 80kg/m³와 120kg/m³의 폴로 내부를 채워진 시험체, 웨브 부분 제거한 시험체, 웨브를 완전히 제거한 시험체의 5가지로 구성하였다.

(a) 중공 시험체 (AH) (b) 내부충전 시험체 (AFH, AFL)
(c) 웨브 부분제거 시험체 (BFH) (d) 웨브 완전제거 시험체 (CFH)

그림 7 시험체 제원 및 센서 부착 위치
충전 폐온 그 물성이 일반적인 건축 단열재로 쓰이는 경질 우레탄 폐온(Rigid Polyurethane Foam)에 해당하며, 주된 뿌인 polycate와 polyl은 PPG와 MDI를 1:1로 혼합하여 7000RPM 이상에서 9초정도 교반한 후 구속 없이 실험체 내부에서 발포하였다. 성형된 폐온에 대하여 물성치 실험을 실시한 결과 밀도 80kg/m³ 폐온 밀도 120kg/m³ 폐온의 탄성계수는 각각 8.8MPa와 24.6MPa로 확인되었으며, 이는 실험의 목적에 부합하였다.

시험체의 제조 및 시험 전경은 그림 7에 나타낸 바와 같다. 인탈(Pultrusion) 공법으로 제작된 2세대의 단위 모듈을 전단 및 접착 과정을 거쳐 그림 7(a)와 같이 바닥판의 교차방향을 모사한 8층의 시험체로 제작하였 다. 품 충전이 필요한 시험체는 FRP시험체가 완성된 후 충전을 실시하였으며, 폐온 발포로 인한 압력이 시험체에 미치지 않도록 개방된 상태에서 진행하였다. 웨브의 재기 가 필요한 시험체는 8층 시험체를 완성한 후 웨브를 절단하였으며, 그림 7(c)와 그림 7(d)에 나타낸 바와 같이 80kg/m² 폐온으로 충전하였다.

FRP 바닥판의 교차방향을 모사한 시험체는 전체적인 바와 같이 5세트로 나누어지며, 각 세트당 3회의 실험을 실시하였다. 하중재 INA(Displacement control) 방식으로 실시하였으며, 0.05mm/sec의 속도로 보가 전해지는 계수로 인해 가장 가해지는 하중을 재현하였다. 250kN용량의 유압식 가속기(Actuator)를 사용하여 시험체 중심부에 집중하중을 가하는 3점 트리(3-Point Bending) 실험이며, 지지조건은 128cm간격의 단단한 지지이다. 보의 처짐과 응력분포 등을 측정하기 위한 센서와 실험전경은 그림 7에 나타내었다.

4. 시험 결과 및 분석

각 시험체의 하중-처짐 곡선은 그림 8와 같다. 중공 시험체(그림 8(a))는 일정 하중까지 직선관계를 유지하다가 그 이상의 하중이 되면 비선형 관계를 보이는 양상이 기존의 연구와 유사하다(한국건설기술연구원, 2003: 지평승 등, 2006). 그림 8(a)에서 하중이 불규칙적으로 감소하는 지점들은 웨브-플랜지 연결부에서 축적이적으로 균열이 발생하는 지점이며, 세 개의 시험체 모두 7kN을 전하하여 끝에서 세 번째 웨브의 하단 연결부가 파손되어 전체적인 파괴를 일으켰다.

내부충전 시험체(그림 8(b), 그림 8(c))는 최대하중 및 강상의 현저한 증가와 더불어 파괴시 급격한 하중의 감소를 나타내는데, 이는 구조에 대한 충전 폐온이 압축에 대한 저항으로 시험체의 전단면적을 효과적으로 압제시킴으로써 균등한 바와 같이 시험체의 파괴장통 특히 웨브-플랜지 연결부의 폐온에서 모듈간의 접착부 파괴로 바뀌었기 때문이다. 즉, 웨브-플랜지 연결부에 직접적으로 작용하는 모멘트의 감소로 인하여 파괴모드가 모듈간의 접착부에서 발생하는 모드 I와 모드 II의 복합 파괴모드로 변화한 것이다.

웨브를 제거하고 내부를 폐온으로 충전한 시험체(그림 5(d), 그림 5(e))는 중공 시험체의 비례적 대단으로 큰 강도를 보유하였다. 웨브를 부분적으로 제거한 시험체(그림 5(d))는 폐온이후 웨브가 균열의 전과를 막아주면서 전과적인 파괴를 지연시켰으나 웨브를 완전히 제거한 시험체(그림 5(e))는 급격한 균열증진 때문에 그 위성도가 매우 뛰어났다. 그러므로 내부충전 FRP바닥판에서 웨브의 역할은 전과적인 강도의 증진뿐만 아니라 폐온의 전과를 막아주어 시험체의 연성파괴를 유도하는 것이 확인되었다.
(a) 중공 시험체 (AH)

(b) 내부충전 실험체 (AFH)

(c) 내부충전 실험체 (AFL)

(d) 웨브 부분제거 시험체 (BFH)

(e) 웨브 원전제거 시험체 (CFH)

그림 8 하중-처짐 곡선 및 파괴 형상

22. Nonlinear Behavior and Fracture in Concrete and Composite_911
표 2는 각 시험점의 최대하중 및 강성을 정리한 것이다. 중공 시험점의 최대하중과 강성은 각각 7.01kN, 0.39kN/mm이며, 밀도 80kg/m³의 품으로 충전한 시험점의 최대하중과 강성은 각각 23.19kN, 1.27kN/mm이다. 충전재의 탄성계수와 유리섬유 FRP에 비해서 1000분의 1에도 못 미치지만 3배 이상의 강도 증가가 실험되었으며, 내부충전 FRP바닥판의 초중량이 기존의 중공 FRP바닥판에 비해서 약 13% 증가하여 FRP바닥판의 장점인 경량성을 유지하였다. 밀도 120kg/m³의 품으로 충전한 시험점은 충전재의 결함으로 인하여 다소 부정확한 결과를 얻게 되었지만 밀도 80kg/m³의 품으로 충전한 시험점과 비교하여 충전품의 강도가 전체적인 약화방향 견고성이 미치는 영향을 분석해 보면, 높은 밀도의 품을 사용한 경우 약간의 강성증가를 보이고 있으나 전체적인 최대하중의 증가는 큰 차이를 보이지 않았다. 이러한 품 탄성계수의 증가와 밀도장 강도 증진의 비선형성은 그림 4와 같은 소성해석에서도 확인되었다.

그러므로 비용이 저렴한 낮은 탄성계수의 품을 사용하여도 약화방향 견고성이 현저하게 개선되는 점, 경제성, 자중증가 등을 고려한다면 FRP바닥판의 약화방향 견고성 개선을 위한 충전재로서는 80kg/m³의 품이 120kg/m³의 품보다 더 효과적인 것이라 판단된다. 페브를 부분 제거한 시험점은 모두 제거한 시험점과의 성격의 중간점에 위치한 시험점과 비교하면 최대하중은 각각 약 23%, 30% 감소하였고, 강성은 각각 약 28%, 40% 감소하였다. 그러나 중공실험점과 비교하면 최대하중과 강성 모두 2배 이상이다.

<table>
<thead>
<tr>
<th>시험점 종류</th>
<th>중전밀도 (kg/m³)</th>
<th>최대하중 (kN)</th>
<th>중공시험점 대비 최대하중</th>
<th>강성 (kN/mm)</th>
<th>중공시험점 대비 강성</th>
</tr>
</thead>
<tbody>
<tr>
<td>중공</td>
<td>-</td>
<td>7.01</td>
<td>1</td>
<td>0.39</td>
<td>1</td>
</tr>
<tr>
<td>내부충전</td>
<td>80</td>
<td>23.19</td>
<td>3.31</td>
<td>1.27</td>
<td>4.26</td>
</tr>
<tr>
<td>내부충전</td>
<td>120</td>
<td>22.31</td>
<td>3.18</td>
<td>1.65</td>
<td>4.23</td>
</tr>
<tr>
<td>페브분제거</td>
<td>80</td>
<td>17.9</td>
<td>2.55</td>
<td>0.91</td>
<td>2.33</td>
</tr>
<tr>
<td>페브완전제거</td>
<td>80</td>
<td>16.3</td>
<td>2.33</td>
<td>0.77</td>
<td>1.97</td>
</tr>
</tbody>
</table>

5. 결론

본 논문에서는 기존에 개발된 사각형 중공 FRP 바닥판의 파괴모드를 소성역학의 측면에서 해석하였으며, 취약방향의 교축방향 견고성 개선을 위해서 내부충전 방안을 제시하고 그 공통적성을 실험적으로 검증하여 다음과 같은 결론을 도출하였다.

1. 중공 시험점의 실험에서 얻어진 하중-변위선도는 소성현지 모델로 잘 모사되었으며, 실험에서 관찰된 하중-변위선도의 범프(bump)는 소성현지가 형성될 때 발생하는 탄성에너지의 발산 때문이다 것으로 판단된다. 본 연구에서 수행한 역산결과 연결부의 연결강도의 향상이 매우 큰 것으로 확인되었으므로 연결부에 집중되는 모멘트를 감감하거나, 연결부의 장도를 총합할 수 있는 대안이 필요함을 확신하였다.
2. 구조제목을 개선시키기 위한 대안으로서 바닥판 내부를 구조용 풍으로 충전하였으며, 선행된 해석 결과 약 21 MPa만 사용하여도 소성파괴모드의 강도가 접착부 바리파괴모드의 강도 수준까지 향상시킬 수 있다는 것을 확인하였다.

3. FRP에 비하여 탄성계수가 1000분의 1에도 못 미치는 구조용 풍을 바닥판 내부에 충전하여도 본래의 경향성을 유지하면서 약축방향의 강도가 3배 이상 증가하였다. 충전 풍이 낮은 전단탄성에 기인한 약축방향의 낮은 강성을 증진시켜줄 뿐만 아니라 평면지와 현광의 연결부에 작용하는 모멘트를 경감시켜주므로써 목적하였던 역할을 충분히 담당하고 있음을 확인하였다.

4. 바닥판의 자중과 생선의 경계성을 고려한다면 본 연구에서 고려한 내부충전 FRP 바닥판의 충전제로서는 밀도 80kg/m³의 풍과 120kg/m³의 풍 중에서 밀도 80kg/m³의 풍이 적합하다고 판단되며, 경계성 측면이 더욱 강조되면 약 60kg/m³의 풍을 사용해도 바닥판의 강성과 강도를 약 2배 정도 증진시킬 수 있다는 것으로 예상된다.

5. 본 연구에서 고려한 내부충전 FRP 바닥판의 측면이 전체적인 강도의 증진에 크게 영향을 미치지는 못하지만 풍 내부의 균열 수리에 막아주어 일시적인 취성파괴를 막고 다소나마 연성파괴를 유도함을 확인하였 다.

감사의 글

본 연구는 2005년 한국건설기술연구원과 고려대학교 방계연구소 간의 연구계약으로 이루어진 것으로, 연구 지원에 감사드립니다.

참고 문헌

