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SUMMARY

An extended �nite element method scheme for a static cohesive crack is developed with a new formula-
tion for elements containing crack tips. This method can treat arbitrary cracks independent of the mesh
and crack growth without remeshing. All cracked elements are enriched by the sign function so that no
blending of the local partition of unity is required. This method is able to treat the entire crack with
only one type of enrichment function, including the elements containing the crack tip. This scheme
is applied to linear 3-node triangular elements and quadratic 6-node triangular elements. To ensure
smooth crack closing of the cohesive crack, the stress projection normal to the crack tip is imposed to
be equal to the material strength. The equilibrium equation and the traction condition are solved by the
Newton–Raphson method to obtain the nodal displacements and the external load simultaneously. The
results obtained by the new extended �nite element method are compared to reference solutions and
show excellent agreement. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the most awkward problems encountered in the analyses of crack growth is that
remeshing is required near the crack tip as the crack grows. Such remeshing is not only
burdensome but it requires projection of variables between the di�erent meshes and causes
di�culties during post-processing, for example, when a variable at a spatial point is monitored.
This di�culty may be avoided by meshless methods, such as the element-free Galerkin method
(EFGM) [1], or the extended �nite element method (XFEM) [2]. The latter is especially well-
suited to the structure of existing commercial �nite element codes.
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The key idea of the extended �nite element method (XFEM) is that part of the displacement
�eld is approximated by a discontinuous displacement enrichment [2] based on a local par-
tition of unity [3, 4]. The displacement �eld thus is approximated by the sum of the regular
displacement �eld, which is the displacement without any discontinuities, and the enrich-
ment displacement �eld, which is the additional displacement that models the discontinuities.
A good engineering explanation of the nodal enrichment can be found in Mo�es
et al. [5].
XFEM was �rst developed for two-dimensional linear elastic fracture mechanics (LEFM)

[2]. A single crack was considered and the near-tip �eld solutions were used as the nodal
enrichment functions. XFEM has subsequently been extended to many applications; step
function enrichment [5, 6], crack growth with friction [7], arbitrary branched and intersect-
ing cracks [8], three-dimensional crack propagation [9], material discontinuity problems
(strain discontinuity) [10, 11], etc. The method has been successfully applied to �uid me-
chanics, too [12].
Recently, a second-order XFEM scheme was developed for linear elastic fracture by Stazi

et al. [13]. But they used a quadratic �eld only for the continuous displacement �eld. The
enrichment in their work was linear, so the crack opening pro�le in elements not containing
the crack tip is linear. Wells et al. [14] have used the extended �nite element concept with
6-node triangular elements but limited their enrichment to the case where cracks end at element
edges.
In this paper, we develop a new enrichment technique by which curved cracks can be

treated with higher order enrichments. The crack tip can be located anywhere within an
element. The technique is based on Chen’s [15] development for constant strain triangles.
In addition, we closely examine the accuracy of these method for the static cohesive crack
model.
The cohesive crack model was introduced by Dugdale [16] and Barenblatt [17]. It has

been used extensively in non-linear fracture mechanics of quasibrittle materials [18–24], etc.
In the cohesive crack model, the stress singularity at the crack tip found in LEFM is can-
celled by the stress intensity factor due to the cohesive stress on the crack surfaces in the
fracture process zone. The cohesive stress depends on the crack opening displacement in the
fracture process zone and, typically, decreases (or softens) as the crack opening displacement
increases.
There are other applications of XFEM to the cohesive crack models. Wells and Sluys [25]

applied the XFEM concept to the cohesive crack model but limited their enrichment to the
case where cracks end at element edges. Mo�es and Belytschko [21] implemented the XFEM
scheme for cohesive cracks in linear triangular elements. In their work, a linear element is
enriched by the step function if it is completely cut by a crack, and by the branch function
if the crack tip is located inside the element. Their load–de�ection responses compare well
to experimental results.
In the enrichment developed here, an element containing a crack tip is enriched by the sign

of a signed distance function whose gradient is normal to the crack and a polynomial along
the crack. We consider polynomials of �rst and second order but the method is applicable
to any order. The contribution of the paper lies in that the branch function used in previous
XFEM [21] formulations for cracks is dropped, so that the partition of unity holds in the entire
enriched subdomain. Both a �rst-order scheme and a second-order scheme are developed by
this procedure. The scheme can be applied to various non-linear softening laws.
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2. ENRICHMENT OF DISPLACEMENT FIELD

For elements completely cut by a crack, the step function has been successfully used in many
applications [2, 5, 8, 9, 21, 26]. We will here use the sign function instead of the step function
because of its appealing symmetry, but the numerical discretization is identical. The sign
function is de�ned as

sign(x)=

{−1 for x¡0

+1 for x¿0
(1)

The sign function enrichment is equivalent to the Heaviside step function enrichment, which
is the nomenclature used in preceding works.
If a crack grows element by element, i.e. if the crack tip is always located on an edge

of an element, a successful element can be devised by using only the sign function without
other enrichment functions [14, 15, 25]. When a crack grows smoothly, the crack tip may be
located inside an element. Then we must account for elements partially cut by a crack. This
kind of element will be called a tip element. In this case, the sign function cannot be used
directly because the sign function does not yield the appropriate displacement �eld for the tip
element.
Branch functions, typically, rm sin #=2 where m=0:5; 1:0. etc., have been used for the

enrichment of the tip element [2, 10, 13, 21]. For a discussion of the branch function, see
Belytschko et al. [10]. When branch functions are used in conjunction with step functions,
as in Reference [5], the partition of unity property does not hold in the elements surrounding
the tip element. The enrichment of those elements is a local partition of unity and it must be
blended to the rest of the domain for optimal performance because the branch function does
not vanish at the edges of the tip element. Note that the branch function is not a piecewise
constant function like the sign function. For a discussion of local partitions of unity and
blending, see Chessa et al. [4].
In order to avoid the di�culties associated with the branch functions in the tip element, a

new enrichment is developed here. This procedure is similar to that given by Chen [15] but it
is generalized to quadratic elements in this paper. It can be applied to elements of any order
without di�culty.
Consider a crack �c in a two-dimensional body � with boundary � as shown in Figure 1.

We denote by x the spatial co-ordinates. The crack is described implicitly by the level set
function

�(x)=0 (2)

and its two end points xcrI ; I =1; 2. Depending on the cohesive law, a traction �c is applied
across the crack surface near the tip.
The displacement �eld u of the body can be additively decomposed into a continuous part

ucont and a discontinuous part udisc:

u(x)= ucont(x) + udisc(x) (3)
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Figure 1. A two-dimensional domain containing a cohesive crack inside the domain.

The discontinuous part of the displacement �eld is approximated by standard C 0 shape func-
tions NI (x), so

ucont(x)=
∑
I∈Ntot

NI (x)uI (4)

where Ntot is the total set of nodes and uI are nodal displacements.
If we consider a triangulation on the body � as shown in Figure 2, then the discontinuous

part of the displacement �eld can be limited to the elements that contain the crack. We call
this subdomain �enr. Let Nenr be the set of nodes of the elements cut by the crack �c. The
discontinuous part of the displacement �eld can then be written as [2]

udisc(x)=
∑
I∈Nenr

NI (x)�I (x)aI (5)

where �I (x) are enrichment functions and aI are enrichment parameters.
We now discuss how these enrichment functions are constructed. For this purpose, we

consider separately elements completely cut by a crack and those containing the crack tip.
For elements in �enr completely cut by the crack,

�I (x)= sign(�(x))− sign(�I); I ∈Nenr in �enr (6)

where �I =�(xI). Note that the sign function is shifted by sign(�I). Otherwise the enrichment
displacement �eld does not vanish outside the enriched element. This shift does not alter the
approximating basis but it simpli�es the implementation because the resulting enrichment
vanishes in all elements not cut by the crack; Figure 3 illustrates the e�ect of the shift in one
dimension.
In the following, we consider only triangular elements. Therefore we can express all vari-

ables as functions of the area (triangular; barycentric) co-ordinates ^=(�1; �2; �3). The spatial
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(a)

(b)

Figure 2. The enriched domain �enr (shaded area) and the enriched nodes Nenr (circles), where a virtual
(dashed) line segment is added to calculate the signed distance function in the tip element; at square nodes,
the enrichment parameters aI =0: (a) 3-node linear elements; and (b) 6-node quadratic elements.

co-ordinates are then given by

x=
ne∑
I=1
xINI (^) (7)

where ne is the number of nodes in the element.
For elements containing a crack tip, we consider �rst a 3-node linear element as shown

in Figure 4(a) and 4(b). We consider an element with nodes 1, 2, 3 and the crack passing
through side 23. The crack is assumed to be straight within the element. Let the direction of
the crack be such that it intersects side 12. Other relationships between the element and the
crack can be obtained by permuting the node numbers. We wish to construct an enrichment
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(a) (b)

Figure 3. One-dimensional enrichment displacement �elds: (a) NI (x) sign(x); and
(b) NI (x) {sign(x) − sign(xI )}; the regular shape functions are represented by the
dashed lines and the enrichment displacement �elds by the thick solid lines; the shaded

elements are the enriched elements.

that vanishes on the two edges 12 and 13 (which is necessary for compatibility), and is
continuous across edge 23 with the �eld in the adjacent element. To meet these conditions,
only node 3 is enriched and the discontinuous displacement �eld in the tip element is

udisc = ^∗3�3(^∗)a3 (8)

where ^∗= �∗I = {�∗1 ; �∗2 ; �∗3} are the parent coordinates of the shaded region 23P in Figure 4(b),
i.e. the element generated by side 23, side 3P and P2, where P is the intersection point of
the line joining node 2 to the crack tip and side 31. The shaded parent area coordinates are
related by �∗3 = 1− �∗1 − �∗2 and �3(^∗)= sign(�(^∗))− sign(�3). The relation between ^∗ and
^ is given by

�∗1 =
�1
�1P
; �∗2 = �2 (9)

where �1P is the area co-ordinate of point P.
When the direction of the crack intersects side 31 (Figure 4(c) and 4(d)), then the discon-

tinuous part of the displacement �eld is

udisc = ^∗2�2(^∗) a2 (10)

where

�∗1 = �1 −
�1P
�2P

�2 and �∗2 =
�2
�2P

(11)

Here, �2(^∗)= sign(�(^∗))− sign(�2) and a3 = aP =0.
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(a) (b)

(c) (d)

Figure 4. (a,c) Enrichment displacement �eld udisc, (which vanishes along 2P and 3P, respectively), in a
3-node linear tip element and (b, d) the parent domain of the linear tip element, (in which the shaded

areas represent the enriched region �enr); crosses in (b) designate the quadrature points.

The enrichment can be implemented more easily by letting

udisc =
∑
I
^∗I�I (^∗) aI (12)

and constraining aI to vanish for the nodes on the edge toward which the crack is heading,
as shown in Figure 2(a).
These enrichment displacements, Equations (5), (8) and (10), vanish on the boundary of

�enr (see Figure 3(b) for the one-dimensional example). Therefore, only the elements in �enr
need a special treatment to model the crack. Furthermore, all of the elements in �enr have
enrichments of the same type. Therefore, in contrast to previous methods [2, 21], this is a
partition of unity in �enr and there is no inner blending between di�erent enrichments. In
addition, since the enrichment vanishes on the boundaries of �enr, blending to outside the
enriched subdomain does not occur. Thus, although this is a local partition of unity, it is
indistinguishable from a global partition of unity.
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(a) (b)

(c) (d)

Figure 5. Enrichment displacement �eld udisc in a 6-node quadratic tip element for two crack directions
(a and c, respectively) and the corresponding parent domains (b and d, respectively); the shaded areas

represent the enriched region �enr.

The enrichment developed for a 3-node element is generalized to a 6-node element as
follows (Figure 5). Again, let the crack cut the edge 23 when passing into the element. The
mapping for a 6-node element is exactly the same as before, i.e. (9) and (11). The crack may
be curved within the element and its direction is given in the element by a quadratic implicit
function,

6∑
I=1
NI (^)�I =0 (13)

where NI are the quadratic shape functions for a 6-node triangle.
The enrichment displacement �eld for the case shown in Figure 5(a) and 5(b) is given by

udisc =N3(^∗)�3(^∗)a3 + N5(^∗)�5(^∗)a5 + N6(^∗)�6(^∗)a6 (14)
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For the case shown in Figure 5(c) and (d)

udisc =N2(^∗)�2(^∗)a2 + N4(^∗)�4(^∗)a4 + N5(^∗)�5(^∗)a5 (15)

Based on the preceding, we can write the discontinuous displacement of a quadratic tip
element as

udisc =
∑

I∈Nenr; tip
NI (^∗)�I (^)aI (16)

with aI =0 at three of the nodes as shown in Figure 2(b).

3. SIGNED DISTANCE FUNCTION

The choice of the sign of the signed distance function � does not change the computational
results. When the sign of � is altered, the sign of the enrichment parameters aI change sign.
Therefore, the sign of � can be chosen arbitrarily as long as the sign is consistent along the
crack �c.
The absolute value of the signed distance function at a point x is de�ned as the minimum

distance to the crack �c. Given the nodal values of the signed distance function �I , the signed
distance function at any point in the enriched domain �enr can be interpolated by means of
�nite element shape functions;

�(x)=
∑
I∈Nenr

NI (x)�I (17)

The unit normal n (Figure 1) in the positive direction is easily determined by

n=
@�
@x

(18)

Although other interpolation techniques, such as the moving least squares [27], are available,
(17) is the simplest yet accurate enough to capture the crack growth. Methods for updating
the level set are given in Ventura et al. [28, 29].

4. VARIATIONAL PRINCIPLE OF XFEM AND DISCRETIZED EQUATIONS

The weak form of equilibrium is given by

�W int = �W ext + �W coh (19)

where

�W int =
∫
�

@�u
@x

: � d� (20)

�W ext = �
∫
�t
�u · �0 d� (21)
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�W coh =
∫
�c+
�u+ · �c+d� +

∫
�c−
�u− · �c− d� (22)

=−
∫
�c
�cn · �(u+ − u−) d� (23)

Here W int is the internal work, W ext is the external work of the traction ��0 along the traction
boundary �t, W coh is the work by cohesive traction along cohesive crack �c; � is the load
factor, �0 is the normalized external traction on �t ; �u is the test function (which vanishes
along the displacement boundary �u), � is the stress, �c = �c(w)n is the cohesive traction along
the cohesive crack �c; �c(w) is a softening law, w is the crack opening displacement. It is
assumed that the direction of the cohesive traction �c coincides with the normal direction n
of the crack line �c. The crack opening displacement w is given by

w= n · (u+ − u−)= n · 2 ∑
I∈Nenr

NIaI (24)

From the weak form (19) and the enrichment displacement �eld (3)–(5) or (3), (4), (16),
one can obtain the discrete equilibrium equation:

f int = f ext + f coh (25)

where

f int =K · q=
∫
�
BTCB d� · q (26)

f ext = �
∫
�t
NT�0 d� (27)

f coh =−2
∫
�c
�c(w)NTn d� (28)

Here f int ; f ext and f coh are the internal, external and cohesive forces, respectively. K is the
sti�ness matrix, q=[qT1 ; q

T
2 ; : : : ; q

T
Ntot ]

T; qI =[uTI ; a
T
I ]
T are the generalized nodal displacements,

B is the strain–displacement matrix and C is the tangential modulus matrix. The B matrix is
given by

B=

{
B0 for unenriched elements and

[B0 Be] for enriched elements

}
(29)

where B0; Be are the regular and the enriched parts, respectively. The B0 and Be matrices
are given by

B0 = [B01 ; B
0
2 ; : : : ;B

0
ne ] and Be = [Be1; B

e
2; : : : ;B

e
ne ] (30)

B0I =



NI; x 0

0 NI;y

NI; y NI; x


 and BeI =



NI; x�I 0

0 NI;y�I

NI; y�I NI; x�I


 (31)
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∇NI =




[
@NI
@^ ·

(
@x
@^

)−1]
for the regular and the completely cut elements

[
@NI
@^ · @^

∗

@^ ·
(
@x
@^

)−1]
for the tip element




(32)

The derivative of the enrichment function � does not appear in (32) because the domain
� is de�ned to be an open set that does not include the crack �c and the derivative of the
enrichment function @�=@x vanishes in �.

5. THE CONDITION FOR SMOOTH CRACK CLOSING AND THE
DIRECTION OF CRACK GROWTH

In addition to the equilibrium condition (25), one more condition is needed to obtain the load
factor � in (27). By the de�nition of the cohesive crack model [17], the stress intensity factor
at the crack tip should vanish, which implies that the crack closes smoothly. This condition
is called the zero stress intensity factor condition. Because the mode II stress intensity factor
is typically negligible compared to the mode I stress intensity factor, only the mode I stress
intensity factor is taken into account [21], i.e.

KItip = 0 (33)

where KItip is the mode I stress intensity factor calculated at the crack tip. In the �nite element
method, the stress intensity factor at the crack tip is e�ciently calculated by means of the
domain integration technique [30] (also see Reference [21]).
Alternatively, and equivalent in principle, one may require the stress projection in the

normal direction n of the crack to be equal to the tensile strength of the material, since the
zero stress intensity factor implies that the stress at the tip should be �nite [19, 20, 24, 31, 32],
i.e.

n · � · n=ft (34)

where � is the stress at the crack tip and ft is the tensile strength of material. This condition
will be referred to as the stress condition in the following. Either (33) or (34) could be used
but the stress condition (34) is simpler and will be used here.
The direction of crack growth is determined by using the stress intensity factors [21,23,

33,34], so

�=2arctan
1
4

(
�extK ±

√
�ext2K + 8

)
(35)

where �extK =K
ext
I =K

ext
II is the ratio of external mode I and mode II stress intensity factors and

� represents the direction of the crack growth relative to the tangent to crack at the tip.
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6. ALGORITHM

The solution should simultaneously satisfy the equilibrium condition (25) and the stress con-
dition (34). This stress condition (34) can be written as

S · qeI =ft (36)

where S=MT ·C ·B is an operator by which stress at the tip is calculated, M= n⊗ n in Voigt
notation and qeI are the generalized nodal displacements of element e.
Using (25) and (34), we solve for q and � directly by means of the Newton–Raphson

method. The residual of the Newton–Raphson method is given by

r=

{
K · q − f ext�− f coh(q)

ft − Sq

}
(37)

where the independent variables of the Newton–Raphson method are q and �. The
Jacobian is

A=


K − @f coh(q)

@q
−f ext

−S 0


 (38)

where

@f coh(q)
@q

=− 2
∫
�c

@�c(w)
@w

NT · n · nT ·N d� (39)

From Equations (37) and (38), the increments of the independent variables at the ith
iteration are {

	q

	�

}i
=− (

Ai−1
)−1· r i−1 (40)

The overall algorithm is as follows:

1. Calculate the signed distance function for a given crack.
2. Construct the sti�ness matrix K using (26).
3. Calculate the derivative of the cohesive force with respect to the generalized nodal
displacements using (39).

4. Calculate the Jacobian of the Newton–Raphson method, (38), the residual (37) and the
increments (40).

5. Iterate step 4 until q and � converge.
6. Calculate the direction of crack growth (35) and grow the crack in that direction.
7. Go to step 1.

In the �rst step, the fracture process zone is not developed yet. Therefore, � is simply obtained
from the condition that the stress at the notch tip should be equal to the strength ft .
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7. NUMERICAL STUDY

7.1. Example

In order to study the new XFEM scheme, we solved the double-cantilever-beam (DCB)
problem shown in Figure 6(a); a linear softening law (Figure 6(b)) is used. Young’s modulus
is 36:5 GPa and Poisson’s ratio is 0:18. The results obtained by the new XFEM scheme are
compared to those obtained by the static condensation method [20] which has extensively
been used to analyze the fracture properties of many experimental tests when the direction of
crack propagation is known [18–20, 31, 35]. The static condensation method is also known as
the pseudo boundary integral (PBI) method.
Because the crack propagation path in the static condensation method must be predeter-

mined, the angle � in (35) is �xed to zero to make the crack propagate in a straight line. To
save computation time, only the elements along the anticipated crack path are re�ned; they
are as small as 0:82 mm (Figure 7). The crack passes through the elements in the mesh as
shown in Figure 7(a). The mesh for the static condensation method is shown in Figure 7(b)
which corresponds to half of the DCB specimen because of symmetry.
To examine how the choice of the cohesive crack criteria (33) or (34) a�ects the re-

sults, two cases are considered; (i) the zero stress intensity factor condition Equation (33)
and (ii) the stress condition at the tip Equation (34). Because it is not easy to obtain the
Jacobian matrix for the Newton–Raphson method when the zero stress intensity factor con-
dition is used, in the �rst case, the secant method is used to obtain the load factor � itera-
tively; the displacement u corresponding to a value of � is obtained by the Newton–Raphson
method.

7.2. Convergence rate and load–de�ection history

Because no analytical solution of the problem is available, the load–de�ection histories
with the most re�ned mesh are chosen as the reference solution. The error is de�ned as the
ratio of the area between a reference curve and the current curve to the total area under the

0 0.02 0.04 0.06 0.08

0

1

2

3

4
Gf =50 N/m

Linear

Bilinear

Crack opening displacement [mm]
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ss
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M
Pa

]

(a) (b)

Figure 6. (a) A double-cantilever-beam (DCB) with 30% notch; and (b) softening traction-displacement
laws; the solid line represents a linear softening law and the dashed line represents a bilinear softening

law; the crack opening and stresses �y are measured along the dashed line in (a).
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(a)

(b)

Figure 7. (a) A mesh which consists of 6-node triangular elements used for the extended �nite element
method, in which hmin ∼ 1:8 mm; and (b) a mesh which consists of 4-node quadrilateral elements used
for the static condensation method, in which hmin ∼ 0:82 mm and only a half of the specimen is

modelled because of the symmetry of the DCB specimen.

reference curve:

error =

∫ u

0
|fcomp − fref | d 
u∫ u

0
|fref | d 
u

(41)

where u is the load–point displacement, and fcomp and fref are the computed load–
de�ection curve and the reference one, respectively. The convergence rates for the linear
and quadratic elements for various mesh re�nements are shown in Figure 8. The conver-
gence rate of the second-order method, 1.23, is much better than the �rst-order method, 0.48,
respectively.
The load–de�ection histories for the quadratic elements with the stress condition are plotted

and compared to the result by the static condensation method in Figure 9. The load–de�ection
histories are calculated for three di�erent mean re�nements and, for all cases, agree well with
the reference.
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Figure 8. Relative errors in load–de�ection histories obtained by the extended �nite element methods
with linear displacement triangles (empty circles) and quadratic displacement triangles (solid symbols).
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Figure 9. Load–de�ection histories obtained by the second order XFEM scheme with the stress
condition (34), in which the linear softening law in Figure 6(b) is used for every case.

7.3. Crack opening and stress pro�les

The crack opening is shown in Figure 10 and the stresses �y are shown in Figure 11 for three
di�erent mesh re�nements: h = 2; 5 and 11mm. They are scaled by the critical crack opening
displacement wc and the tensile strength ft , respectively. Because the enrichment function is
based on a partition of unity, spurious crack opening is not observed even in the coarse mesh.
The crack opening pro�les for h = 2 mm almost coincide with the reference crack opening
pro�les so that the di�erence is indiscernible.
The stresses on the dashed line in Figure 6(a) are plotted in Figure 11. It can be seen

that the change of the stress pro�les as the crack advances in the fracture process zone is
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Figure 10. Comparison of dimensionless crack opening pro�les by the extended �nite element method
(dashed line: h = 2 mm, dash-dot line: h = 5 mm, dotted line: h = 11 mm) and the static condensation

method (solid lines); the crack openings are scaled by the critical opening wc.
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Figure 11. Comparison of dimensionless stresses �y by the extended �nite element method (dashed
line: h = 2 mm, dash-dot line h = 5 mm, dotted line: h = 11 mm) and the static condensation method

(solid lines); the stresses are scaled by the material strength ft .

approximately self-similar. As the mesh is re�ned, the stress pro�les converge to the reference
pro�les. The stress pro�les for h = 2 mm agree well with the reference pro�les.

7.4. Bilinear softening law

Because of their simplicity, linear softening laws are frequently used. However, when post-
peak behaviour is important, non-linear softening laws may be more accurate. Equations (37)
and (38) can be applied to non-linear softening laws as well as linear softening laws.
One might think that if the fracture energy of two di�erent softening laws is identical,

the load–de�ection curve does not change. But, it has been shown analytically by Ba�zant
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Figure 12. Comparison of the load–de�ection
histories in the cases where the linear soften-
ing law (solid line) and the bilinear softening
law (dashed line) are used, respectively.

Figure 13. Dimensionless stresses �y at the peak
load for the linear softening law (solid line) and the
bilinear softening law (dashed line), respectively.

and Zi [36] that the nominal strength of a structure is a�ected by the shape of softening
laws.
A bilinear softening law is shown in Figure 6(b). The tensile strength and the fracture

energy of the bilinear softening law (dashed line) are the same as those of the linear softening
law (solid line). The load–de�ection histories for the two are compared in Figure 12. The
peak load associated with the bilinear softening law is smaller than the linear one and the
shapes of the load–de�ection histories di�er as well. As one can see in Figure 13, the fracture
process zones are not fully developed at the peak loads, to which only the initial parts of the
softening curves (in Figure 6(b)) contribute. Therefore the fracture energies associated with
the peak loads are di�erent although the fracture energies for the two softening laws are the
same.

7.5. Simulation of curved crack growth

We consider a problem of curved cohesive crack growth. This problem has been considered
by Belytschko et al. [1] with EFG, and involves an instability in the crack path which curves
the crack. To trigger this instability, the notch of the DCB specimen is placed 2 mm (2%)
o� the centre line. The paths of the cracks for various mesh re�nements are shown in Figure
14(a) and the load–de�ection histories are depicted in Figure 14(b).
Because the position of the new crack tip is calculated based on the stress intensity factors

of the current con�guration, the paths do not coincide but they agree better as the mesh is
re�ned. The crack paths do not converge uniformly. For moderate re�nement (h=3:3mm) the
path shifts forward and then returns to an intermediate path with further re�nement. The crack
path turns back near the boundary of the specimen. This happens because the calculation of
the stress intensity factors that drive the direction of crack growth by (35) is not accurate
near the boundary.
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Figure 14. (a) The crack growing paths of the DCB specimen for various mesh re�nements;
and (b) the change of the load–de�ection when the crack path is curved; straight crack

(solidline) and curved crack (dashed line).

8. CONCLUSIONS

A new XFEM scheme for static cohesive cracks has been developed in the framework of
the extended �nite element method. All the cracked elements, including the tip element,
are enriched by the sign function so that the partition of unity holds in the entire do-
main. The parent domain of the partially cracked tip element is divided into two parts: the
cracked and the uncracked parts. Only the cracked part is enriched by the sign function.
That scheme is applied to the linear 3-node and the quadratic 6-node elements. Although
the branch function is not used in the scheme developed in this paper, the crack tip can be
located anywhere inside the tip element. The path of the crack can be completely independent
of mesh.
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